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Abstract. Similarly to the Kadomtsev-Petviashvili (KP) equation, a set of genenlized 
symmetries with arbitrary functions of t is given by a simple constructable formula for the 
integrable dispersive long wave equations in 2+ I space dimensions. These symmetries COnSfiNte 
an infinite-dimensional Lie algebra which is a generalization to the known wm algebra. 

1. Introduction 

The Kadomtsev-Petviashvili (KP) equation [l] (KP) is a (2+1)-dimensional system 
which leads to a large class of (l+l)-dimensional integrable models upon appropriate 
reductions [2,3]. In terms of the dynamical variable u(x ,  y ,  2 ) .  the KP equation can be 
written as 

U,* = (&U, - u ~ ~ ~ ) ~  - 3 ~ ,  K 2 .  (1) 

In 141, the generalized Lie algebra constituted by the symmetries of the KP equation has 
been obtained 

[Kn(hl) ,  Km(hz)l = fKn+m-z((m+ l)hih2 - (n + 1)Lzht) (2) 

where hi and h2 are arbitrary functions of t ,  h = (a/at)h = Dzh and the Lie product [,I is 
defined by 

(3) 
a 

a6 
[A, B ]  = -[A@ + E B )  - B(u + E A ) ]  Ir=o= A'B - B'A . 

The generalized symmetries K,(h) can be expressed simply by [4] 

with 
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The Abelian algebra (h = constant), centreless Virasoro algebra (h = t ) ,  w, algebra 
(h = t', s 2 0) [5,6] and the loop algebra obtained in [7] (h, = 0, m 2 3) are all special 
cases of the algebra (2) [4]. Now the question is whether a similar algebra can be found 
for other types of the integrable models. 

In this paper, we study the generalized symmetries and algebras of the (2+1)-dimensional 
integrable model, integrable dispersive long wave equations (IDLWE) 

which were first obtained by Boiti et nl [SI. Paquin and Winternitz had given a Kac-Moody- 
Virasoro symmetry algebra [9]. In [IO], nine types of two-dimensional partial differential 
equation reductions and 13 types of the ordinary differential equation reductions are obtained 
by means of the direct and non-classical method [11,3]. The IDLWE (5) and (6) have no 
PainlevC property [I21 though they are integrable 181. 

In section 2 of this paper we derive a set of generalized symmetries with arbitrary 
functions o f t .  This set of symmetries constitutes an infinite-dimensional Lie algebra. The 
commuting algebra, centreless Virasoro algebra and a w, algebra are all some special 
subalgebras. Section 3 is devoted to discussing the existence of another set of symmetries 
with arbitrary functions of space y .  Only one special symmetry of this type is given. 
Section 4 is a summary and discussion. 

2. Symmetries with arbitrary functions o f t  and the corresponding algebra 

A symmetry 

U = ( ; )  

of the l D L W  is defined as if U satisfies the linearized equations of (5) and (6) 

U t y  = -& - (UUlxy 

n t = - ( w + ~ z i + u , , ) ,  
which means that (5) and (6) are form invariant under the transformation 

U - - t U + € L I  

v -+ 7 -k EH 6 infinitesimal. 

(7) 

Similarly to the KP equation, we look for the symmetries of the IDLWE which have the form 
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with f being an arbitrary function of t ,  f"' = (ak/atk) f  and U [ k ]  and H [ k  - 11 are 
functions of x ,  y ,  U ,  r )  and their derivatives, but they are not time-dependent explicitly. 
the explicit time dependencies of U( f )  and H (  f) have been separated out in f ( t )  and its 
derivatives. 

Substituting (12) and (13) into (8) and (9) and considering the non-trivial condition 
D # 0 yields the only possibility: 

m = n  (14) 

?I+.? 

- f("+2-k'D,DyuU[k - I ]  
k=I 

n+l 

- f("+'-x' (vU[kl+ . 
k=O 

Since f = f ( t )  is an arbitrary function of t ,  (15) and (16) should be true at any order 
of differentiation of f ( t ) .  That means the following overdetermined equations should be 
satisfied: 

Uy[O] = 0 i.e. U[O] = g(x)  = g (17) 

W O 1  = - ( r ) ~ [ O l L  (18) 

U[11 = - (u~[Ol) ,  (19) 

U[k l  = -Ut[k - I ]  - D;'H,[k - 21 - (uU[k - I]), k = 2 ,3 , .  . . , n + 1 (20) 
k = 2 ,3 ,  . . . , n f  1 

(21) 

(22) 

(23) 

H [ k -  11 = -H,[k -21 - ( u H [ k  - 2 I X  - ( q U [ k -  I])= - U,,,[k - 11 

UrJn + 11 = - H h I  - W [ n  + 
H h I  = -(uH[nl), - W [ n  + U), - U,& + 11 

where D,D;I = D;'D, = 1. Equations (20) and (21) can be solved recursively; the result 
reads 

Now the only thing left to do is to substitute 
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into (22) and (23) to determine the only unknown function g(x) .  

way. At first, substituting g(x) = I ,  x/2 and x 2 / 8  into (17)-(23) respectively, we have 
Fortunately, as in the KP case, we can firstly give the form of g ( x )  in a simple alternative 

itself is an f -  (and then t-) independent symmetry of the IDLWE which is the same as saying 
that 

Consequently, (29), (31) and (36) tell us that 

are three time-independent symmehies of the IDLWE. The symmetries Ko(-l) and K,(- l )  
correspond to the x and t translations respectively. Substituting (28H38) into (7) with (12) 
and (13), we get three generalizations of (39)-(41): 
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One can readily verify that 

is a master symmetry of degree one for the IDLWE. Now using the standard master symmetry 
approach [13,14] and seed Ko(-l), we get a set of the time-independent commuting 
symmetries: 

[Km, KnI=O.  (48) 

Now replacing K d t )  in (47) by Kz(f), we get the genedization of K,,(f) for all time- 
independent K,,(-l): 

(49) 
2 
n 

~"(f) = - - [ ~ ~ ( f i ) ,  K,-'] f = f1 ~ - , ( f )  = O  n = 1,2, .. . . 

Similarly to the KP case, in (49), we have defined the Lie algebraic meaning of D;' by 

D i ' C  = yC + h(x ,  t )  (50) 

where C is a constant and h is an arbitrary function of x and t which should be determined 
directly from the symmetry definition equations (8) and (9). 

Because the various integral functions which should be fixed have been included in 
every high-order symmetry defined by (49), to get the concrete form of &( f) is still quite 
difficult. In order to get the concrete form of K , , ( f ) ,  we return to (12), (13), (24) and (25) 
and fix the function g(x) .  

From (8) and (9), we know that dependence of f (and its derivatives) for K,(f) must 
be linear because (8) and (9) are linear in U and H, (49) is linear in f(= f;) and f is an 
arbitrary fbction oft. Accordingly, we know that Kn(f) determined by (49) can also only 
have the forms (12).and (13) with (24). Now we determineg(x) for Kn(f) (n = 0, I ,  2 , .  . .) 
in a simple way using the same method as the KP case. If we say that x and y have a 
common dimension LL], then from the l D L w  (5) and (6). we know that t ,  U and should 
have the dimensions [LIZ, [LJ-' and [L]-' respectively. Then from (42>-(44) and (49), we 
see that Uo(f)/f, U~(f)/f, Uz( f)/f, . . . , U,(f)/f have the dimensions [LI-', [L]-3 ,  
[L]-4,..., [L]-"-*. That is to say, f ( " + ' ) g . ( x ) / f ,  one term of U,(f)/f, must have 
dimension [L]"-2, or equivalently, g ( x )  must have dimension [L]". Accordingly, the only 
possible form of g,(x) for K , ( f )  given by (49) is 

X" 
g,(x) = - Znn! n = 0,1,2,. . 
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where the constant factor 1/2"n! (which is not very important because any symmetry 
can be multiplied by an arbitrary constant) has been inserted such that the expressions 
of K,(f), (n = 0, 1, 2, . . .) obtained by (12), (13) and (24) with (51) and those defined 
in (49) coincide. Furthermore, if we want to find out all the possible symmetries given by 
(12) and (13) with (24) in addition to those given in (49). an arbitrary function in (24). 
g(x) ,  may be used. However, if we require the symmetries to be analytical at x = 0, then it 
is enough to find out all the possible independent symmetries shown by (U), (13) and (24) 
with g ( x )  being given by (51) because an arbitrary analytical function can be expanded as 
a Taylor series. Nevertheless, if we do not require a symmetry to be analytical at x = 0, 
we should also discuss the symmetries with g(x)  = x-", n = 0, 1, 2, . . . . In this case, 
the symmetries (12) and (13) which have finite terms should be replaced by some infinite 
series expressions. We will treat such types of formal series symmetries in future studies, 
but not here. Finally, the generalized symmetries Kn(f) can be written as 

with 

k = l , 2  ,..., n + l .  (53) 
After finishing the detailed calculations, we can prove that the generalized symmetries 

&(f) also constitute a closed infinite-dimensional Lie algebra which is isomorphic to that 
of the KP equation [4] 

Here we would like to discuss some special cases of (54), instead of giving concrete 
verification. 

(1) fi = fz = constant = -1. In this special case, we reobtain commuting algebra 
constituted by the timeindependent symmetries 

€ ~ . ( f i ) .  K ~ ( A ) I  = fKmtn-1  ((m + 1)Afz - (n + 1)Afi). (54) 

K"(- l )  = - n=0 ,  1, 2, ... 
.. . . .  

(55) 
(2) f = t .  In this case, K,(t) r. can be called as the ' 5  symmetry' that depend 

explicitly on the variables x ,  y and t linearly. This set of symmetries constitute a centreless 
Wrasoro algebra (more precisely, the loop algebra of meromophic vector fields on circle): 
[K.(O, Km(t ) l  = [rn, ~1 = f ( m  - n)Km+,-l(t) n, m 2 0, K - M  = 0. (56) 

(3) f = t', (r = 1, 2, . . :). It is interesting that, in this special case, the general 
algebra (54) reduces to the algebra isomorphic to the wm algebra 

(57) 
which are widely used in other fields of physics [5 ] .  So we call the algebra (54) the 
generalized wm algebra. 

Starting from the general symmetry expression (52) we can obtain not only the explicit 
expressions of the commuting symmetries (53, but also the explicit expressions of the 
time-dependent master-symmetries of degree k 

[ ~ " ( t ' ) ,  ~ ~ ( t ' ) ]  =.4~,+.-1 ((r(m + I) - s(n + l))t'+'-') 
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3. Existence of another set of symmetries with arbitrary functions y 

In addition to the Kn( f )  symmetries, there may be other types of symmetries for the IDLWE. 
For instance, we can look for the symmetries of the IDLWE which have the form 

3241 

where g is an arbitrary function of y .  g@) = ( a k / a y k ) g ( y )  and U [ k ]  and H [ k ]  are y -  
independent explicitly. The explicit y dependencies of U [ k ]  and H [ k ]  have been separated 
out in g('). Substituting (59) and (60) into (8) and (9) yields 

U,[OI = -H,,[Ol - (UU[Ol), 

HJOI = -(uH[OI), - UXJOI 

(61) 

(62) 

(63) 

f f r [ k l = - ( ~ H [ k l + ~ U [ k -  l ] + U x [ k ] + U x y [ k -  I]), k =  1,2, ..., n (64) 
Ury[nl = -(H.[n + 11 + u,U[nl+ uUy[nl), (65) 

Hr[n + 11 = -(uH[n + 11 + vU[nI+  U&l), . (66) 

vr[kI + Uty[k - 11 = - (Hx[k]  + uY(r[k - 11 + uU[k]  + uU,[k - 11) ,  k = 1,2, . . . , n 

To find all the possible solutions of (61H66) is quite difficult. Here we give a special 
simple example. One can easily verify that 

U[O] = -Uy H[O]  = -7) H [ 1 ]  = - q y  (67) 

U[k ]=H[k+l ]=O k > O  (68) 

i.e. 

is a non-trivial solution of (61H66). The commutation relations of the algebra constituted 
by K. ( f )  and Y (g) are given by (54) and 

It is also interesting that there exists an infinite-dimensional KaoMoody-Virasoro-type 
subalgebra of (54), (70) and (71), 

X(h)  = M - h )  T(f) = K1(-f) Y(g) = Yo(-g) (72) 
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where h and f are two arbitrary functions o f t  and g is an arbitrary function of y; then we 
get an infinitedimensional subalgebra of the l D L W  from (54). (70) and (71). The non-zero 
commutation relations of this subalgebra read 

Using a known algorithm I151 and a MACSYMA program, this subalgebra was firstly found 
by Paquin and Winternitz 191 where X(h), T(f) and Y(g)  were expressed as the following 
totally equivalent forms: 

x ( h )  = h(t)a, +ha, (76) 

(77) 

(78) 

'and the corresponding Lie product is changed as [A, B] = A B  - BA.  Up to now, we have 
not yet found any other solutions of (61)-(66). Whether there exist any more non-trivial 
solutions of (61)-(66) is worthy of further study. 

~ ( f )  = m a ,  + +fxa, + ;(fx - fu)a. - + i)anl 

y(g) = m a ,  - g ( n l  + n a v i  + 1 = v 

4. Summary and discussion 

In this article, using the method of 141 given by the author for the KP equation, we get a 
set of generalized symmetries with an arbitrary function o f t  for the IDLW in two space 
dimensions. The generalized infinite-dimensional Lie algebra constituted by this set of 
symmetries is a generalization of the well known wm algebra which was firstly found 
for the KP hierarchy, Toda theory, string theory, two-dimensional graviq and membrane 
theory [5,6]. Different from the KP equation, the generalized symmetry of the y-translation 
contains an arbitrary function of space (y) instead of time ( t ) ,  which means there may exist 
another set of generalized symmetries with an arbitrary function of y. Unfortunately we do 
not yet have get any other non-trivial solutions except Yo(p) .  On the other hand, there may 
exist also some formal infinite series symmetries with arbitrary functions o f t  and negative 
powers of x which should be studied further. 

There exist various other interesting problems worthy of further study. One of the 
most important problems may be how much and what type of (2+1)-dimensional integrable 
models possess such types of generalized symmetries and generalized w, algebra in addition 
to the 2D IDLWE, U!.?, 3D Toda field [16] and the Nizhnik-Novikov-Veselov equation [17]. 
Further study of the symmetries and generalized w m  algebra of IDLW and the generalized 
symmehies and algebras for other (2+l)-dimensional models are in progress. 
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