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Beyond-mean-field effects on nuclear triaxiality
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The beyond-mean-field effects on nuclear triaxiality are studied by applying the projected total energy surface
(PTES) calculations to the light tungsten isotopes 170–178W, which have been well described as prolate rotors
within the mean-field approximation. The present PTES calculations have well reproduced the experimental
energies of the yrast states and the available experimental transition quardrupole moment (Qt ) in function of
spin. In particular, the results present a considerable large triaxiality for their ground states, with an average triaxial
deformation γ ∼ 15◦. For a comparison, the total Routhian surface calculations have also been performed for
these nuclei, the results show a well-established axial quadrupole deformation in their ground states. The presence
of the significant triaxial deformation can be attributed to the beyond-mean-field effect as the angular momentum
projection. This effect is therefore essential for a variety of mean-field approaches since it is only associated with
the necessary restoration of the rotational symmetry in the laboratory frame, which is spontaneously broken in
the intrinsic frame.
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I. INTRODUCTION

Nuclei are microscopic finite quantum many-body systems
that can present collective properties corresponding to specific
shapes of the mean field, which can be described by a
geometric nuclear surface. The collectivity associated with
a quadruple-shaped deformation has been understood as one
of the most basic aspects of nuclear structure [1,2]. Mean-field
approaches, with the intrinsic spontaneous symmetry breaking
mechanism, are widely used to understand the microscopy of
the nuclear quadruple deformation. The study of the origin of
nuclear equilibrium deformation and its evolution as function
of proton and neutron numbers as well as function of spin has
long been a subject to attract great theoretical and experimental
interest; for a review, see, for example, Ref. [3] and references
therein.

The theoretical studies based on the mean-field approxima-
tion have been very successful and extracted the conclusion
that most of the deformed nuclei show a quadruple deformation
of the prolate kind that preserves to a great extent axial
symmetry. However, the present study challenges the validity
of this conclusion by showing that the significant triaxiality,
the axial symmetry breaking, can occur in those nuclei who
are predicted by mean-field models to be axial rotors due
to the beyond-mean-field effects associated with the angular
momentum projection. The mean-field framework can be
considered as a useful starting point for microscopic studies
of nuclear structure. Mean-field approximations are based
on product trial wave functions, which break usually several
symmetries of the underlying nuclear Hamiltonian. The full
quantum mechanical description of a nuclear state requires the
necessary restoration of all these symmetries in the laboratory
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frame in order to obtain the good quantum numbers for the
wave function of the quantum state. The typical example is
the restoration of the rotational symmetry, which is broken in
the quadruplely deformed mean field, representing the prolate
shape, with only one symmetric axis, or the triaxial shape, with
no symmetric axis. The rotational symmetry restoration can be
realized through angular momentum projection onto the wave
function, and this is crucial in description of the quadruple
collectivity, such as nuclear high spin states. We will discuss
the point in detail below.

To incorporate the beyond-mean-field effects associated
with the rotational symmetry restoration, the projected total
energy surface (PTES) approach has been recently developed
[4] based on the triaxial projected shell model (TPSM) [5],
hybridized with the macroscopic-microscopic method. The
total energy of an atomic nucleus can be decomposed into the
macroscopic, microscopic, and rotational terms. In this model,
the macroscopic and microscopic parts are described with
the liquid drop model and Strutinsky method of shell effects,
respectively, and the rotational energy is given by the TPSM,
as the beyond-mean-field term. One well-known approach
for the description of the nuclear shape and its evolution in
highly rotating nuclei has been the total Routhian surface
(TRS) method based on the cranked shell model (CSM).
The basic framework of the PTES is similar to the TRS, but
the key difference between the two approaches is the fact
that the PTES has the energy surface carrying good angular
momentum and the TRS provides the energy surface having
a semiclassical rotating frequency, not quantum number. In
other words, the TRS is a pure mean-field approach while the
PTES contains the beyond-mean-field effects associated with
the rotational symmetry restoration. The somewhat details
about the advantages and disadvantages of two approaches
will be discussed in sections below. The major advantage
of the PTES approach is manifested by the fact that the
energy surfaces correspond to each of given spins so that the
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determined nuclear states have a good quantum number of
angular momentum and theoretical results, therefore, can be
compared directly with the experimental data in the laboratory
frame.

The present PTES calculations will focuss on the light
tungsten isotopes, 170–178W even-even nuclei, which have
been predicted based on the mean-field approximation, for
example, from the TRS calculations, to have an axial quadruple
deformation in their ground states. The performed calculation
was based on the strategy of adopting axial symmetric
shaped system having been well described by the mean-field
models as the starting point to investigate the development
of the triaxial shapes driven by the beyond mean-field effects
associated the necessary rotational symmetry restoration in
the laboratory frame. To the date much data have been
collected, especially the spectroscopy of the low-lying states
in even-even systems with mass number A = 170–200. This
mass region is particularly interesting because it lies between
the doubly magic numbers. These nuclei showing oblate
deformation or deformed mass distributions breaking axial
symmetry (referred to as triaxial deformation) are of great
interest to deepen into the understanding of the shell structure
underlying the appearance of deformation. For example, the
neutron rich isotopes of Er, Yb, Hf, W, Os, Pt showing a prolate
to oblate shape transition as well as best examples of triaxial
ground states. These neutron-rich isotopes are, therefore, best
quantum many-body systems for the studies of the shape phase
transitions, including deformation changes to the oblate and
triaxial shapes, whose magnitude depends on the valence nu-
cleons and have been shown to exhibit remarkable fingerprints
in spectroscopic observables, for example, see Refs. [6–9].
This transitional region is also characterized by the strong
competition between oblate and prolate configurations, i.e.,
shape coexistence, and of particular interest has been the
case of 190W, for example, see Refs. [10–12]. Although the
interesting physics in this mass region is rich as mentioned
above and those phenomena have been successfully studied
based on the mean-field approximation, the beyond-mean-field
effects on the nuclear triaxiality have not been studied. we
have aimed in the present investigation the impact of the
beyond-mean-field effects on the nuclear triaxiality, and for
this purpose the light tungsten system is one of best targets for
the study because of their characteristics of the prolate rotor
predicted in the previous mean-field studies.

In Sec. II, we provide a brief description of the projected
total energy surface theory, which incorporates the beyond-
mean-field effects in the energy surface calculation. Section III
presents the calculated results and the discussions, including
the TRS calculation for a comparison. Finally, a summary and
conclusion are given in Sec. IV.

II. BRIEF DESCRIPTION OF THE PROJECTED TOTAL
ENERGY SURFACE THEORY

The projected total energy surface approach has been
developed based on the triaxial projected shell model and
hybridized with the macroscopic-microscopic method, in
which the total energy of the nuclear system includes three

terms,

Etot = ELD + Ecorr + Erot, (1)

where ELD is the liquid-drop model energy [13], Ecorr presents
the quantal effects, which is given by the Strutinsky method
as the shell correction term [14,15], and sometimes includes
the pairing correction. For simplicity and more clear structure
of the theory the pairing correction is not considered in the
present calculation, and it was checked that inclusion of pairing
correction does not change the results of minima although
the energy surface becomes a bit complex in the region apart
from the minimum. The term of Erot is the rotational energy
obtained by the TPSM, which can be further decomposed
into the collective rotational term and the quasiparticle (QP)
excitation induced by rotation [4]. The basic construction of the
total energy is similar to that of the total Routhian in the total
Routhian surface (TRS) method where the rotational energy
is calculated microscopically as a function of the rotational
frequency, namely, the difference between the expectation
values of the Hamiltonian at the rotational frequency nonzero
and zero by using the cranking wave function, 〈�ω|H |�ω〉 −
〈�ω=0|H |�ω=0〉, see, for example, Refs. [16–19]. In addition,
the QP excitation energy is calculated as the sum energy of the
excited QPs in the rotating frame at the frequency ω, which
belong to the given configuration. A similar construction of
the total energy in laboratory frame has been successfully
applied to the energy curve calculation, energy in function
of elongation deformation, in the studies of the collectiv-
ity of neutron rich nuclei [20] and the shape-coexisting rotation
of neutron-deficient nuclei [21].

All the terms of Eq. (1), of course, depend on the neutron
and proton numbers (N,Z), and the deformation parameters,
ε2, γ , and ε4, which are not written explicitly. The PTES
described with Eq. (1) carries then the good quantum number
of angular momentum through the rotational term, and the
minimization procedure has to be performed for each given
spin. Therefore, the PTES approach may be classified as the
variation after projection.

The Hamiltonian of the TPSM is expressed as follows:

H = H0 − 1

2

4∑
λ=2

χλ

λ∑
μ=−λ

Q
†
λμQλμ − G0P

†
00P00

−G2

2∑
μ=−2

P
†
2μP2μ. (2)

Where H0 is the spherical single-particle Hamiltonian, which
contains a proper spin orbit force [22]. The second term
is the quadrupole-quadrupole (QQ) interaction that includes
the nn, pp, and np components. In normal spectroscopic
calculation of TPSM, the interaction strength is determined in
a self-consistent way with the quadrupole deformation; refer
to Ref. [5]. In the energy surface calculation, however, the QQ
interaction strength χ should be fixed during the calculation,
namely, keeping a constant for each of deformation mesh
points. The problem for the adoption of the interaction strength
arises then due to hundreds of deformation points. However,
unfortunately, the strength value has not yet been given in a
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commonly known way. We suggest a rule that this quadrupole
interaction strength may be obtained in the self-consistent
way of the TPSM theory with respect to a proper one of the
deformation mesh points. In the present calculation, the values
of the strength χ are determined in the self-consistent way
with the equilibrium deformation corresponding to the local
minimum of the Strutinsky’s energy surface of ELD + Eshell.
Consequently, our PTES calculation has to include two steps,
namely, first the Strutinsky’s energy surface to obtain the
interaction strength and finally the PTES. Note that two kinds
of energy surface are not required to have exactly the same
mesh structure, and this allows us to reduce the computation
time. The third term in the Hamiltonian is the monopole
pairing, whose strength parameter G0 (in MeV) is determined
by the expression G0 = (g1 ∓ g2

N−Z
A

)A−1, where g1 = 20.12
and g2 = 13.13 was taken in the present calculation, which
are suitable for the rare-earth mass region [23], and the minus
(plus) sign stands for neutrons (protons). The last term is
the quadrupole pairing, whose strength parameter G2 may
be calculated from G2 = f G0, usually f = 0–0.2, we set
f = 0.16 as an usual value. In the present calculation, the
hexadecapole deformation is not considered as a variable and
taken as of ε4 = 0.

The TPSM wave function is expressed by means of the
projection operator,

|�IM〉 =
∑
Kκ

F I
κ,KP̂ I

MK |
κ〉, (3)

in which the projected multi-QP states span the shell-model
space. Where, |
κ〉 represents the set of multiquasiparticle
states labeled by κ , and for even-even nuclei it includes the
two- and four-QP states associated with the triaxially de-
formed QP vacuum |0〉,α†

ν1
α†

ν2
|0〉,α†

π1
α†

π2
|0〉,α†

ν1
α†

ν2
α†

π1
α†

π2
|0〉.

The triaxially deformed single-particle states are generated
by the Nilsson Hamiltonian. In the present TPSM calculation
three major shells of N = 4,5,6 for neutrons and N = 3,4,5
for protons are considered, and the pairing correlations are
included by a subsequent BCS calculation for the Nilsson
states. P̂ I

MK in Eq. (3) is the three-dimensional angular-
momentum-projection operator [5]. The rotational energies
together with the wave functions, i.e., the coefficients F I

κ,K ,
are obtained by solving the eigenvalue equation,∑

Kκ

F I
κK

(〈
κ ′ |HP I
K ′K |
κ〉 − EI 〈
κ ′ |P I

K ′K |
κ〉
) = 0. (4)

In the present approach, the sum of the liquid-drop and
the shell-correction energies, ELD + Ecorr in Eq. (1), pro-
vides the energy of the deformed BCS vacuum state, relative to
the spherical liquid-drop energy, and the rotational energy Erot

is calculated by Eq. (4), relative to the deformed QP vacuum.
The total energy of the deformed nuclear system, Etot in
Eq. (1), is consequently defined in the laboratory frame, which
is in function of spin and has also a good parity. The nuclear
equilibrium deformation for each of the yrast or low-excited
states can be obtained by minimizing their respective total
energy with respect to the deformation parameters, ε2 and
γ . Once the PTES calculation is completed the minimization
procedure can be performed simply through the finding of the
local minimum in the total energy surface at a given spin.

FIG. 1. Contour plot of total energy in units of MeV for the
ground state of 172W, the local minimum is marked by +.

III. RESULTS AND DISCUSSION

A. PTES for given angular momentum

All calculations of the projected total energy surfaces in
the present work are carried out for a given angular momenta
as well as a given parity; this allows us to obtain the nuclear
states with good quantum numbers of spin and parity and,
therefore, provides an opportunity to make a direct comparison
between the theory and the experiment. The general features
of the projected total energy surfaces for the ground state (GS)
Iπ = 0+ are illustrated with the example of the 172W in Fig. 1.
In the present PTES calculations the range of the elongation
deformation ε2 is taken from 0.1–0.3, while the range of the
triaxial deformation γ from 0◦–50◦, and the mesh points of 20
have been taken for both the ε2 and γ deformations. Figure 1
shows that there exist a local minimum in the PTES for the
GS of 172W, which represents the equilibrium deformations of
(ε2 = 0.252,γ = 16.4◦). The results imply that the GS of the
nucleus is well deformed, and it is particularly noteworthy to
have a considerable axial asymmetry with γ ∼ 16◦. We will
show that the triaxiality of a similar size appears in the yrast
states of the 170–178W even-even isotopes, and the reason for
that may be attributed to the beyond-mean-field effects.

B. PTES for the yrast states in the 170–178W isotopes

The PTES calculation for 172W at the GS Iπ = 0+,
demonstrated in the above subsection, has been extended
to the yrast states of the 170–178W isotopes, up to spin 20.
A local minimum is found in each of the 55 PTESs for
spins of Iπ = 0+,2+,4+,6+, . . . ,20+ in the yrast bands of
these five nuclei. These local minima allow to determine
the equilibrium deformations (ε2,γ ) for each spin in the
yrast states of the 170–178W isotopes, and the results are
listed in Table I. Both the elongation and triaxial equilibrium
deformations presents being almost unchanged from spin
0 up to 20 for each of 170–178W isotopes, characterizing
well-deformed nuclei where the kinetic moment of inertial
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TABLE I. Deformations of the yrast states of 170–178W isotopes determined by the energy minima in PTES for spins 0+–20+.

Iπ 0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+ 16+ 18+ 20+

170W ε2 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.24 0.24 0.24
γ 17.6◦ 17.6◦ 17.4◦ 17.2◦ 17.2◦ 17.2◦ 17.2◦ 17.2◦ 16.2◦ 16.2◦ 16◦

172W ε2 0.252 0.252 0.252 0.254 0.254 0.256 0.258 0.256 0.252 0.250 0.252
γ 16.4◦ 16.4◦ 16.2◦ 16◦ 15.8◦ 16.2◦ 15.8◦ 15.2◦ 15.4◦ 15.6◦ 15.4◦

174W ε2 0.244 0.244 0.244 0.246 0.246 0.246 0.248 0.246 0.244 0.244 0.244
γ 18.2◦ 18.2◦ 18.2◦ 18◦ 18◦ 18◦ 17.8◦ 18◦ 18.2◦ 18.4◦ 18.6◦

176W ε2 0.24 0.24 0.24 0.24 0.24 0.241 0.241 0.24 0.24 0.24 0.24
γ 11.4◦ 11.4◦ 10.8◦ 10.4◦ 9.8◦ 9.6◦ 9.2◦ 9◦ 9◦ 9.4◦ 9.4◦

178W ε2 0.244 0.244 0.244 0.244 0.244 0.244 0.244 0.246 0.246 0.242 0.246
γ 11.8◦ 11.8◦ 11.6◦ 11.4◦ 11◦ 10.6◦ 10.6◦ 10.4◦ 10.2◦ 11.4◦ 11.6◦

does not considerably change with increasing spin. A slightly
larger ε2 deformation is found for the ground state of 172W
compared to other tungsten isotopes, and the fact is due to
the shell effect, corresponding to the energy gap at N = 98 in
the neutron single-particle diagram. The shell effect is well
described within the mean-field approximation, which has
been contained in the PTES approach. The validity of this
argument may be verified by the TRS calculation, which results
in a similar slight gain in the ε2 deformation at the ground
state of 172W compared to other tungsten isotopes considered,
see Table III. The calculated equilibrium γ deformations for
the yrast states of 170–178W isotopes are considerably large,
about γ = 15◦ in average. It is striking because the pure
mean-field approximation, for example, the TRS calculation,
yields the equilibrium γ deformation of nearly zero for these
light tungsten nuclei, see Table III. The appearance of the
considerable large triaxiality may be attributed, therefore, to
the beyond-mean-field effect associated with the rotational
symmetry restoration of a triaxial-shaped system through the
angular momentum projection.

The PTES for the each state is first calculated and then
the minimization procedure with respect to the elongation
and triaxial deformations is performed to obtain the energy
of the state together with the equilibrium deformations, and
in this way the yrast band is calculated self-consistently
within the PTES approach. Figure 2 shows the calculated
yrast bands for the 170–178W isotopes, the corresponding
equilibrium deformations are given in Table I, compared with
the experimental data [24,25]. It is seen that the calculated
results are in good agreement with the experimental data.

C. Deformation changes in the 170–178W isotopes

The ε2 deformation for each of the 170–178W isotopes
presents almost unchange with increasing spin, characterizing
the well-deformed rotor. A tiny change of ε2 deformation has
been found in the band interaction region, where the two-QP
configuration comes into play. The elongation deformations
for the five isotopes present very stable, the ε2 values are
about 0.24 for 170,174,176,178Wand about 0.25 for 172W, and
this exceptional case has been explained as the shell effect
in the previous section. In contrast to the stability of the
elongation deformation the triaxial deformation presents a
slight decreasing with increasing neutron number. The triaxial

deformation of γ ≈ 17◦ is found for 170,172,174W and a smaller
value of γ ≈ 11◦ for 176,178W. The γ deformation change of
few degrees may be understood as the origin of the shell effects.
The energy gap of N = 98 at around ε2 = 0.25 in the neutron
single-particle Nilsson diagram persists in a large range of
the triaxial deformation, from γ = 0◦–30◦. The negative shell
correction energy associated with the energy gap provides the
basic condition for the formation of relatively large γ softness
in 170,172,174W, where the neutron Fermi level lies around the
energy gap. On the other hand, a much less enhanced γ softness
appears in 176,178W as the neutron Fermi level lies well above
the N = 98 energy gap. The addition of the quantal rotational
energy could drive, therefore, the nuclear shape towards a
larger γ deformation for 170,172,174W than for 176,178W.

The calculated equilibrium γ deformations of the ground
states in 170–178W slightly decrease with the increasing neutron
number. It is interesting to note that the energies of the observed
γ -band heads in these nuclei present a slightly increasing
with increasing neutron number. These two opposite variation
tendencies with increasing neutron number might have their
correlation, which is also implied in the TPSM calculations
of the γ bands where a slightly decreasing γ deformation has

FIG. 2. Calculated yrast bands, the energy levels, for 170–178W
isotopes compared with the experimental data.
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TABLE II. Quadrupole deformations ε2 and γ employed in the
TPSM calculation for ground-state bands and their γ bands in
170–178W isotopes.

Nuclei 170W 172W 174W 176W 178W

ε2 0.242 0.252 0.244 0.240 0.244
γ 27.5◦ 25◦ 25◦ 24◦ 23◦

to be employed to reproduce the experimental data when the
neutron number increases, see Table II.

The transition quadrupole moments measured by using
high-precision experimental techniques are one of best ob-
servables to provide a specific measurement of the quadrupole
deformation. The transition quadrupole moments Qt can be
expressed as a function of quadrupole deformations (β2, γ ),

Qt = 6ZeA2/3

(15π )1/2
r2

0 β2

[
1 + 2

7

(
5

π

)1/2

β2

]
cos(30◦ + γ ). (5)

The transition quadrupole moments Qt of the yrast states
in 170W and 172W were determined experimentally up to
spin 20 by the lifetime measurements [26,27]. With the
calculated equilibrium deformations (ε2, γ ) of the yrast states,
as presented in Table I, the transition quadrupole moments of
170,172W are calculated by using the equation above and taking
β2 = ε2/0.946 and r0 = 1.280fm. The calculated Qt results
are shown in Fig. 3 and compared with the experimental data
of the lifetime measurements.

The agreement between theory and experiment is quite
good except that the experimental data are rather smaller than
theoretical values for the three yrast states of 10+–14+ in 170W.
The dropping behavior of Qt observed at spin 10–14 remains to
be understood, and, however, we should mention that the high
accuracy of the lifetime measurement at the band interaction
region was difficult to be ensured due to the complex γ -ray
side feedings. Unfortunately, there are no more experimental
Qt data in the light tungsten isotopes to compare with the
PTES calculations, and thus the theoretical results for other
nuclei given in Table I need further experimental verifications.

D. Triaxiality and γ bands

The considerable triaxiality is found for 170–178W isotopes,
the average value of the equilibrium triaxial deformation is
γ ∼ 15◦. The origin of the considerable large triaxiality is
attributed to the beyond-mean-field effect as having addressed
above. The observed low lying γ bands in the light tungsten

TABLE III. Deformations of the ground state of 170–178W isotopes
determined by the energy minima in TRS at the rotational frequency
of h̄ω = 0.02h̄ω0.

Nuclei 170W 172W 174W 176W 178W

ε2 0.224 0.241 0.234 0.224 0.224
γ −3◦ 2◦ 2◦ −3◦ −3◦

isotopes may be regarded as the indirect evidence for the
existence of the considerable triaxiality in these nuclei. In
the TPSM calculations for the γ bands, the elongation
deformations have been taken as the same as the equilibrium
elongation deformations for the ground states Iπ = 0+, while
the values of the γ deformation have been taken to reproduce
the excitation energies of the γ bands, adopted deformation
values seen in Table II. The present TPSM calculations
well reproduce the experimental γ -band data as well as the
ground-state bands, as shown in Fig. 4. To reproduce the γ
bands a large γ deformation, ∼25◦ has been taken, and the
specific values for the light tungsten isotopes decrease slightly
with increasing neutron number. The energy of the γ -band
head is sensitive to the γ deformation. The small change of
the γ deformation, about a few degrees, is crucial to reproduce
the experimental data that the excitation energies of γ bands
decrease with neutron number, from 0.937 MeV for 170W,
0.930 MeV for 172W, 0.977 MeV for 174W, 1.042 MeV for
176W, to 1.111 MeV for 178W. The increase of γ value of ∼4◦
leads to the lowering of 174 keV for the γ -band-head energy
from 178W to 170W. It is a longstanding puzzle that many
well-deformed nuclei through the nuclear chart for which
the mean-field models predict the axial symmetry, γ ∼ 0◦,
the low-lying γ bands have been observed. The possible
explanation for the phenomenon has been widely argued as
the γ vibration around the prolate nuclear shape. The present
PTES theory predicts a wide happening of the considerable
triaxiality in the ground nuclear states, and, therefore, the
understanding of the wide existence of the low-lying γ bands
becomes more transparent, as the picture of the γ vibration
around the axial symmetric shape is no longer a solid starting
point for the modeling.

E. Comparison between the PTES and TRS calculations

The total Routhian surface (TRS) approach has been inten-
sively employed to study highly rotating nuclei, which is one
typical nuclear model based on the mean-field approximation
but without including of the beyond-mean-field effects. It
is, therefore, instructive to make a comparison between the
PTES and TRS calculations. The rotational frequency, as a
classical term employed in the TRS approach has been a useful
quantity to describe nuclear rotation. However, because of this
semiclassical nature of the TRS method it is not possible to
strictly describe the ground state, which has a good angular
momentum of I = 0. It should be noticed that the quantum
state with spin of I = 0 is a rotational one and does not match
with the rotational frequency of zero. Usually, to describe
the ground state of the nucleus, the TRS calculation may be,
empirically, performed at a small rotational frequency, which
is larger than zero and far below the band crossing frequency.
As an example, the TRS for 172W calculated at the rotational
frequency of h̄ω = 0.02h̄ω0, is shown in Fig. 5, which reports
a local minimum at the deformations of (ε2 = 0.241,γ = 2◦).
The calculated equilibrium elongation deformation by the
TRS is similar to one calculated by the PTES, but much
different equilibrium γ deformation is always generated from
the TRS than the PTES. The value of γ = 2◦ from the TRS
calculation indicates the axial symmetry for the ground state
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FIG. 3. Calculated transition quadrupole moments (open circle) in function of spin for the yrast bands of the 170,172W, compared with the
available experimental data (solid circle).

of 172W, while the value of γ = 16.4◦ obtained from the
PTES calculation implies the axial asymmetry nature for the
GS of the same nucleus. Note that the present PTES and
TRS calculations start with the same single-particle states
and approximately same pairing interaction as well as the
same model space truncation, and the major difference is
the fact that the former contains the angular momentum
projection but the latter does not. Therefore, we may safely
conclude that the beyond-mean-field effect, associated with

the angular momentum projection, is responsible for the origin
of the significantly large triaxiality obtained from the PTES
calculation.

Recently, the global calculation across the nuclear chart
of axial symmetry breaking was carried out by using
the macroscopic-microscopic finite-range liquid-drop model
(FRLDM) [28,29]. Many nuclear ground states have been
predicted to be triaxially shaped or γ soft by the FRLDM
calculations, and some of which were previously predicted

FIG. 4. Calculated ground-state bands and their γ bands (solid symbols), the energy versus spin, for 170–178W isotopes, and a comparison
with the experimental data (open symbols).
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FIG. 5. Contour plot of total Routhian in units of MeV for 172W,
calculated at the rotational frequency h̄ω = 0.02h̄ω0, the minimum
is marked by +.

to be axial symmetric by the TRS calculations. The different
results of the FRLDM than the TRS method come from their
different parameterizations although the two methods belong
to the same type of macroscopic-microscopic approach. For the
light tungsten 170–178W isotopes, both the FRLDM and TRS
calculations report an axial symmetry for the ground states.
As shown in above sections, the present PTES calculation and
TPSM calculation yields the axial asymmetry of (γ ∼ 15◦) for
ground-state bands and (γ ∼ 25◦) for γ bands, respectively.
The larger γ deformation predicted with the PTES and TPSM
calculations than the FRLDM calculations confirms again the
beyond-mean-field effects on the nuclear triaxiality.

The PTES/TPSM approach treats the nuclear rotation
quantum mechanically and allows three-dimensional rota-
tion through the angular momentum projection. In contrast,
the TRS/CSM method (not tilted cranking) treats only the
semiclassical rotation and requires the system to rotate around
the shortest principle axis with a rotational frequency. The

beyond-mean-field effect incorporated in the PTES/TPSM ap-
proach is the quantal effect, which favors the triaxial rotation.
Recently, the first study of the full projected mean field was
performed for the even-even sd nuclei by using the USDB
Hamiltonian. The calculated results show that the intrinsic
shapes of the variation-after-projection (VAP) wave functions
with angular momentum projection are always triaxial while
the usual HFB methods provide axial shapes [30]. In addition,
early other calculations of triaxial deformation and its effect
on the low-energy nuclear structure phenomena performed by
Bender et al. [31,32] using beyond-mean-field calculations
based on the nonrelativistic Skyrme energy density function-
als, by Rodriguez et al. [33,34] and Delaroche et al. [35]
using beyond-mean-field calculations based on the Gogny DIS
interaction, and by Yao et al. [36], by Niksic et al. [37,38]
using relativistic energy density functionals, come to a similar
conclusion that beyond-mean-field effects play an important
role in nuclear triaxiality.

F. Decomposition of energy surface

To study the beyond-mean-field effect associated with the
angular momentum projection in further details the component
energy surfaces have been calculated as a decomposition
of the PTES. The calculated component energy surfaces
for 172W are shown in Fig. 6(a) for the ELD + Eshell and
Fig. 6(b) for the Erot. The liquid-drop model plus shell energy
surface presents a local minimum at the axial symmetry
with the ε2 ∼ 0.24, and the flatness of the surface around
the minimum indicates a modest γ softness towards the γ
deformation direction. The rotational energy surface for the
spin I = 0, shown in Fig. 6(b), presents the striking feature
to drive the ε2 deformation towards a larger elongation and
the γ deformation from both 0◦ (prolate) and 60◦ (oblate)
axial symmetric shapes towards about 25◦. It is seen that
the projected rotational energy at ε2 = 0.24 can generate a
significant enough driving force in the γ direction to provide
a lowering of the total energy in the laboratory frame by about
600 KeV from the axial symmetry to the triaxiality of γ ∼ 16◦.

FIG. 6. Component energy surfaces of the total energy for the ground state of Iπ = 0+ in 172W: (a) ELD + Eshell and (b) Erot. The energy
is in units of MeV.
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The ELD + Eshell surface shown in Fig. 6(a) applies also to
the present TRS calculation so that the TRS shown in Fig. 5
can be regarded as the result by adding the rotational energy
given by CSM to the liquid drop plus shell energy. The axial
symmetric shape described by the local minimum in the ELD +
Eshell surface remains unchange in the TRS, implying that
the γ -deformation driving effect promised from adding the
classical rotational energy defined in the TRS approach is not
sufficient to cause the formation of a local triaxial minimum in
the TRS. In contrast, the quantal rotational energy surface such
as one shown in Fig. 6(b) can provide the strong γ -deformation
driving in the formation of the axial asymmetry shapes of the
yrast states in 172W.

Although a direct comparison between the quantal and
classical rotational energies is not possible but it can be seen
that at ε2 = 0.24 the energy lowering from γ = 0◦ towards 15◦
is about 0.1 MeV for the classical rotation in the TRS at h̄ω =
0.02h̄ω0, estimated by reading data from Fig. 5 and Fig. 6(a),
and, however, it is about 0.6 MeV for the quantum rotation
in the PTES at Iπ = 0+, estimated from Fig. 6(b). These
results indicate that in the nuclear energy surface calculations
the inclusion of the angular momentum projection, as the
beyond-mean-field effects, is crucial in the study of nuclear
symmetry and symmetry break. We would like to emphasize
that the quantal nuclear state at an angular momentum I = 0 is
a certain rotational state, which has the same essential nature
as the one at I > 0, and the rotational energy surfaces at I = 0
and I > 0 will have a similar structure. However, the cranking
nuclear state at the frequency h̄ω = 0 is not a rotational state,
and the nuclear rotation is described at the frequency h̄ω > 0
in the CSM picture. Consequently, there is the fatal problem
in the CSM to describe strictly the nuclear ground state that
has a quantum number of I = 0.

IV. CONCLUSIONS

The restoration of the rotational symmetry plays a crucial
role in the nuclear mean-field modeling of the system with

the axial asymmetric shape. This has been realized in the
PTES approach through the procedure of the variation after
the angular momentum projection. The angular momentum
projection, known as the beyond-mean-field treatment, allows
us to generate the total energy surface for a given spin as well
as parity. The projected total energy surfaces calculated for the
yrast states of 170–178W even-even isotopes present the local
triaxial minima corresponding to the elongation equilibrium
deformation of ε2 ∼ 0.24 and the triaxial deformation of γ =
17◦–11◦. In contrast, the TRS calculations, as the typical mean-
field approximation, yield the axial symmetric equilibrium
shapes with the quadrupole deformations of (ε2 ∼ 0.23,γ ∼
2◦) for the GS of the same nuclei. The experimental data
of the yrast states of 170–178W have been well reproduced
by the present PTES calculation. The calculated transition
quadrupole moments (Qt ) in function of spin are in nice agree-
ment with the available lifetime measurement data in 170,172W.
By using the equilibrium elongation deformation determined
by the PTES calculation and the γ deformation of γ ∼ 25◦, the
TPSM calculations well reproduce the experimental excited γ
bands of 170–178W. The beyond-mean-field effects incorpo-
rated in the PTES approach through the angular momentum
projection are responsible for the origin of the significant
triaxiality predicted by the PTES calculations for the previ-
ously known axial symmetric nuclei such as the light tungsten
isotopes.
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