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1 Introduction

In a recent work, a new representation of the perturbative S-matrix, known as Q-cut rep-

resentation, was proposed [1]. It allows one to write the integrand of loop amplitude as

summation of products of lower-point tree-level amplitudes with deformed loop momenta.

For generic n-point one-loop integrand with all massless external legs, the new representa-

tion takes the form,

IQn (`) =
∑
PL

∑
h1,h2

AL(· · · , ̂̀ h1R ,−̂̀ h2L )
1

`2(−2` · PL + P 2
L)
A(̂̀ h̄2L ,−̂̀ h̄1R , · · · ) , (1.1)

where ̂̀ = αL(` + η), ̂̀R ≡ ̂̀
L − PL with αL = P 2

L/(2` · PL) 6= 0, η2 = `2. As will be

reviewed shortly, two deformations have been applied to the loop momentum `: firstly

the dimensional deformation ` → ` + η with η in extra dimensions, and secondly the

scale deformation ` → α`. The details of the one-loop Q-cut construction was further

clarified in [2], and generalizations to two loops or more was also illustrated in [1]. The Q-

cut representation circumvented two difficulties in the attempt for recursive construction of

loop integrand: canonical definition of loop momentum and the singularities in the forward

limit (which will be referred to as forward singularities). On the other hand, the integration

over loop momentum with such integrand still requires more systematic investigations.

The Q-cut representation was partly inspired by the work [3] and finds direct appli-

cation in the study of writing one-loop amplitudes based on the Riemann sphere [4–6],1

1In the scattering equation formalism [7–11], loop integrands for super-gravity and super-Yang-Mills

amplitude has formerly been proposed [3], since in these theories there is no forward singularity.
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and very recently in an extension to two-loop supersymmetric amplitudes from Riemann

sphere [12]. Another work also reports similar one-loop integrand expansion while investi-

gating elliptic scattering equations at one-loop level [13], based on an earlier work on the

Λ scattering equation [14]. The idea in the Q-cut construction also inspires some thoughts

in the other approach of constructing one-loop amplitude [15], as well as the construction

of two-loop planar integrand of cubic scalar theory [16]. These works have shown the

universality and importance of Q-cut representation for loop integrands in general.

After the discovery of Britto-Cachazo-Feng-Witten(BCFW) recursion relations for

tree-level amplitudes [17, 18], it is very natural to ask if one can construct loop integrands

in a similar, recursive way. The key for the progress lies in expressing planar loop inte-

grands from forward limits of tree amplitudes [19–21], which has been very successful for

cases without forward singularities, such as super-Yang-Mills at one loop and planar N = 4

SYM to all loops [20]. However, for general theories the afore-mentioned difficulties have

only been resolved in the Q-cut construction. These works have indicated clearly that for

generic loop integrands, BCFW deformation has to be applied with extra care, especially

due to the presence of forward singularities. In the Q-cut construction, the dimensional

deformation transforms one-loop integrand into tree diagrams, while the scale deformation

has avoided the forward singularities by excluding the tree diagrams that corresponding to

one-loop tadpole and massless bubble contributions, which should not be presented in the

final amplitude.

Both recursion relations and Q-cut approach to the construction of loop integrands in

general theories are promising but with some unsatisfying features: the Q-cut representa-

tion has non-standard propagators, while it is not clear how to remove forward singularities

in general in recursion relations. Thus it is natural to see if by combining the two methods

to make further progress. In this note, we will initiate the study along this direction. We

would like to see if there is another way to deal with forward singularities and how much

can we learn about the structure of one-loop integrands from both recursion and Q-cut

viewpoints.

This paper is structured as follows. In section 2, we illustrate the application of

BCFW deformation in the Q-cut construction, and present a recursive formula for one-

loop integrand. In section 3, we explain the details of the recursive formula by three

examples, and confirm the validity of the results by comparing with results from one-loop

Feynman diagrams and those from the Q-cut construction. We conclude in section 4.

2 The derivation of recursion relation

Let us first recall the original derivation of Q-cut representation in [1]. After imposing the

dimensional deformation `→ `+η as well as the shift `→ `+P for loop momentum, the n-

point one-loop integrand IQ(`) becomes essentially the (n+ 2)-point tree-level amplitude

T (`), on the condition `2 = 0. Then by scale deformation ` → α`, and by removing

diagrams that contribute to one-loop tadpoles and massless bubbles appropriately, one

gets the one-loop integrand. Since BCFW recursion has been applied to the computation

of ordinary tree-level amplitudes, this naturally motivates us to consider the possibility

– 2 –
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of constructing the (n + 2)-point tree-level amplitudeT (`) using the recursion. Here we

present a derivation of the recursive representation for one-loop integrand following the

afore-mentioned motivation. The derivation will take three steps, as follows.

2.1 Step one: dimensional deformation

Just like the original Q-cut construction [1], the first step of the derivation is to reformu-

late one-loop integrand in terms of tree-level amplitudes. We take the same dimensional

deformation `→ `+ η as in [1] and also the loop momentum shifting, to arrive at

A1-loop =

∫
dD` IQ(`) , IQ(`) =

1

`2
T Q(`) . (2.1)

Some explanations are in order for (2.1). Firstly, from the dimensional deformation, it is

known that T Q is given by those Feynman diagrams with n external legs and two extra

legs by cutting an internal propagator. Thus T Q is defined on the condition `2 = 0, which

says that all ` in T Q should be understood as the null momentum in higher dimension.

Furthermore, T Q is not exactly the full (n + 2)-point tree-level amplitude, since in order

to reconstruct the one-loop integrand, some diagrams should be excluded. Such tree-level

diagrams correspond to one-loop tadpole and massless bubble diagrams with single cuts.

From Feynman diagrams one can inspect that, a tadpole after single cut will produce tree

diagrams with `,−` attaching to the same vertex,2 while massless bubble diagram with the

massless leg pi after single cut will produce tree diagrams with `, pi (or −`, pi) attaching

to the same three-point vertex, and then meeting −` (or `) in the neighboring vertex. The

above scenery would help us to exclude corresponding tree diagrams in the following steps.

Next let us take a look at the contributing tree diagrams to T Q. If the theory under

consideration is not color-ordered, we shall consider the full (n+2)-point on-shell tree-level

Feynman diagrams after removing those corresponding to the one-loop tadpole and massless

bubbles. While if it is color-ordered, the T Q gets contribution from n different color-

ordered tree diagrams, each by breaking an internal line of the n propagators. Since there

are n different color orderings, we can calculate each one independently, for example, using

different methods (such as Feynman diagrams or BCFW recursion relations) or different

deformations in BCFW recursion relations.

A final remark says that, the loop momentum shifting in expression (2.1) makes a

canonical definition of loop momentum, such that the integrand is irrelevant to the labeling

of ` for internal propagators.

2.2 Step two: BCFW deformation

Now let us turn to T Q, and our aim is to determine it by BCFW deformation. Since it

is effectively tree-level amplitude but with forward singularity removed, the analysis on

the large z behavior would be the same and the computation should be straightforward.

Let us, for generality, take two arbitrary momenta pi, pj (but not `,−`) and perform the

standard BCFW deformation

p̂i = pi + zq , p̂j = pj − zq with q2 = q · pi = q · pj = 0 . (2.2)

2Here `,−` denotes two legs by breaking an internal line.
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Such deformation can be realized when the dimension D ≥ 4. In this case, T Q becomes

an analytic function of external momenta pi’s, loop momentum ` and a complex variable

z. As usual, we can consider the contour integration∮
Γ

dz

z
T Q(z) , (2.3)

where the contour Γ is a very large circle. This integration leads to

T Q(z = 0) = B +
∑
z=zγ

T Q

z
, (2.4)

where the sum is over all finite pole zγ ’s of T Q, and B is possible boundary contribution.

It is well-known for tree-level amplitudes that for Yang-Mills and gravity theories, the

BCFW deformation can be chosen such that the boundary contribution vanishes. While

for some other theories, the boundary contribution would appear and require more careful

analysis [22–30]. Here we shall assume B = 0 for simplicity (but the similar consideration

can be generalized to the case with non-zero boundary contributions). Thus the only

information we need for computing T Q by means of expression (2.4) is the pole structure

of function T Q(z).

The BCFW deformation splits a tree amplitude into two parts, with the shifted mo-

menta p̂i, p̂j locating in each part. Assuming K̂γ ≡ p̂i + Pγ is the sum of all momenta in

the part containing p̂i, and Kγ ≡ pi + Pγ . From K̂2
γ = 0 we get zγ = −K2

γ/(2q · Kγ).

Now let us consider the two extra legs `,−`. If they are in the same part, Kγ will have no

dependence on `, thus also the pole zγ . We shall denote the corresponding contribution as

RQA . While if `,−` are separated in two parts, Kγ as well as zγ would depend on `. We

shall denote the corresponding contribution as RQB . So we have

T Q = RQA +RQB . (2.5)

For the contribution RQA , we can further organize it into two parts,

RQA = RQA,1 +RQA,2 . (2.6)

RQA,1 denotes the contribution where legs `,−` are in the part containing p̂j , while RQA,2
denotes the contribution where legs `,−` are in the part containing p̂i. Explicitly, we have

RQA,1 =
∑
h,γ

A(p̂i(zγ), {γ},−K̂h
γ (zγ))

1

K2
γ

T (K̂−hγ (zγ), p̂j(zγ), {β}, `,−`) , (2.7)

where

zγ = −(Pγ + pi)
2

2q · Pγ
, K̂γ(zγ) = Pγ + pi + zγq ,

as well as p̂i(zγ) = pi + zγq, p̂j(zγ) = pj − zγq, and {γ} ∪ {β} = {1, 2, . . . , n}/{i, j}.
Similarly,

RQA,2 =
∑
h,β

T (`,−`, {γ}, p̂i(zβ),−K̂h
β (zβ))

1

K2
β

A(K̂−hβ (zβ), {β}, p̂j(zβ)) , (2.8)
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where

zβ =
(Pβ + pj)

2

2q · Pβ
, K̂β(zβ) = −(Pβ + pj − zβq) .

Note that the sum is over all possible splitting of (n − 2) legs {1, 2, . . . , n}/{i, j} and

helicities. Also note that inside the bracket A(•), T (•) we have explicitly labeled all the legs

in each part but not the ordering of legs. The color-ordering of legs should be understood

with respect to their corresponding theories.

Now let us take a more careful look on expressions (2.7) and (2.8). Firstly, the T part in

RQA,1,R
Q
A,2 will be lower-point on-shell tree diagrams after excluding those corresponding to

tadpole and bubble diagrams. This means that when dressing with 1
`2

, they would become

lower-point one-loop integrand, which can be obtained by any legitimate methods, such as

the original Q-cut construction or Feynman diagram method with partial fraction identity.

One important implication is that the forward singularities in the type RA have been

automatically removed after using the well-defined one-loop integrands of lower points.

Secondly, for RQA,1, the number of legs in set {γ} must be at least one, in order for the

amplitude to be non-vanishing. Naively, the number of legs in set {β} could also be zero.

However, when it is so, the tree diagrams of T are exactly those corresponding to tadpole

and massless bubbles, which need to be excluded. So {β} could not be empty set. Similarly

for RQA,2, the number of legs in sets {γ}, {β} should at least be one.

Now let us analyze the contribution RQB . We can also organize it into two parts,

RQB = RQB,1 +RQB,2 . (2.9)

RQB,1 denotes the contribution where leg ` is in the part containing p̂i, while RQB,2 denotes

the contribution where leg ` is in the part containing p̂j , explicitly as

RQB,1 =
∑
h,γ

T (`, p̂i(zγ), {γ},−K̂h
γ (zγ))

1

K2
γ

T (K̂−hγ (zγ), p̂j(zγ), {β},−`) , (2.10)

where

zγ = −(Pγ + pi + `)2

2q · (Pγ + `)
, K̂γ(zγ) = Pγ + pi + `+ zγq ,

and {γ} ∪ {β} = {1, 2, . . . , n}/{i, j}. While

RQB,2 =
∑
h,γ

T (−`, p̂i(zγ), {γ},−K̂h
γ (zγ))

1

K2
γ

T (K̂−hγ (zγ), p̂j(zγ), {β}, `) , (2.11)

where

zγ = −(Pγ + pi − `)2

2q · (Pγ − `)
, K̂γ(zγ) = Pγ + pi − `+ zγq .

Some discussions are in order for expressions (2.10) and (2.11). Notice that we have used

T instead of tree-level amplitude A, since in this stage potential contributions coming from

– 5 –
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corresponding to tadpole and bubble diagrams in RQB,1,R
Q
B,2 should be excluded. Recalling

our discussion on the excluded diagrams in the previous subsection, we can conclude that,

since `,−` are separated into two parts, there could not be diagrams corresponding to

one-loop tadpoles, while diagrams corresponding to massless bubbles3 do exist in RQB,1 and

RQB,2 when the set {γ} or {β} is empty. In other words, forward singularities corresponding

to tadpoles have been avoided in type RB. Combining the discussions for type RA, we

see that we can remove forward singularities corresponding to tadpoles without using scale

deformation as is done in the Q-cut construction. However, forward singularities that

corresponding to massless bubbles are more difficult to deal with and we will organize

RQB,1 into three contributions

RQB,1 = R′B,1 +R′′B,1 +R′′′B,1 . (2.12)

R′B,1 denotes the contribution of the case when both {γ} and {β} are not empty, so

forward singularities corresponding to massless bubbles will not appear and there will be

no excluded diagrams. Thus the T is exactly the tree amplitude and we have

R′B,1 =

1≤|γ|≤n−3∑
γ,h

A(`, p̂i(zγ), {γ},−K̂h
γ (zγ))

1

K2
γ

A(K̂−hγ (zγ), p̂j(zγ), {β},−`) , (2.13)

where the sum is over all helicities and possible splitting of external legs with the length

of set {γ} satisfying 1 ≤ |γ| ≤ n − 3. This is to ensure that there is at least one leg in

set {γ}, {β}.
R′′B,1 denotes the special case when set {γ} = ∅. In this case, T (`, p̂i, {γ},−K̂γ)

becomes a three-point amplitude, and we get explicitly

R′′B,1 =
∑
h

A(`, p̂i(zγ),−K̂h
γ (zγ))

1

2` · pi
T (K̂−hγ (zγ), p̂j(zγ), {β},−`) , (2.14)

where

zγ = −2pi · `
2q · `

, K̂γ(zγ) = `+ pi + zγq ,

and {β} = {1, 2, . . . , n}/{i, j}.
R′′′B,1 denotes the special case when set {β} = ∅. In this case, T (K̂γ , p̂j , {β},−`)

becomes a three-point amplitude, and we get explicitly

R′′′B,1 =
∑
h

T (`, p̂i(zγ), {γ},−K̂h
γ (zγ))

1

−2` · pj
A(K̂−hγ (zγ), p̂j(zγ),−`) , (2.15)

where

zγ =
2pj · `
2q · `

, K̂γ(zγ) = −(pj − `− zγq) , (2.16)

and {γ} = {1, 2, . . . , n}/{i, j}.
3We need to distinguish massless bubble from massive bubble. The latter is allowed for one-loop dia-

grams.
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Similarly, we can also organize RQB,2 into three parts,

RQB,2 = R′B,2 +R′′B,2 +R′′′B,2 , (2.17)

just as it is defined for RQB,1, but changing `→ −`. Explicitly, we have

R′B,2 = R′B,1|`→−` , (2.18)

and R′′B,2 = R′′B,1|`→−`, R′′′B,2 = R′′′B,1|`→−`.
There is an important observation. If we consider the color-ordered integrand, we

can choose the deformation pair (i, j) such that `,−` are not nearly with the deformed

momenta. Thus the contributions of R′′B,2, R′′B,1, R′′′B,2 and R′′′B,1 do not exist. As we will

discuss in the following subsection, the remaining forward singularities that corresponding

to massless bubbles are exactly in those four terms. In other words, with a proper choice

of deformation pair, we can naturally avoid forward singularities without further using the

scale deformation.

2.3 Step three: scale deformation

In the previous subsection we have expressed T Q as

T Q = RQA +RQB , (2.19)

where RQA = RQA,1 +RQA,2 given in expressions (2.7), (2.8) respectively, and RQB = RQB,1 +

RQB,2, with RQB,1 = R′B,1 + R′′B,1 + R′′′B,1 given in expressions (2.13), (2.14), (2.15), and

RQB,2 = R′B,2 + R′′B,2 + R′′′B,2 by changing ` → −` of RQB,1. In each R expression there

would be T functions, and we should identify them. The T functions are determined

by removing tree diagrams that corresponding to tadpole and massless bubbles. In the

previous subsections, we have presented some discussions on this point, but the complete

resolution will be provided in this subsection. In fact, as we have pointed out, the only left

forward singularities are those in terms R′′B,1,R′′′B,1 and R′′B,2,R′′′B,2. To deal with them, we

use the scale deformation.

Before giving a careful discussion, let us take a look on RQA,1, RQA,2. When multiplying
1
`2

with T in (2.7), (2.8), it trivially becomes one-loop integrand of the original Q-cut

representation with BCFW-deformed momenta. Thus we can identify them as

RQA,1
`2

=
∑
h,γ

A(p̂i(zγ), {γ},−K̂h
γ (zγ))

1

K2
γ

IQ(K̂−hγ (zγ), p̂j(zγ), {β}, `,−`) , (2.20)

where zγ = − (Pγ+pi)
2

2q·Pγ , K̂γ(zγ) = Pγ + pi + zγq. Similarly,

RQA,2
`2

=
∑
h,β

IQ(`,−`, {γ}, p̂i(zβ),−K̂h
β (zβ))

1

K2
β

A(K̂−hβ (zβ), {β}, p̂j(zβ)) , (2.21)

where zβ =
(Pβ+pj)

2

2q·Pβ , K̂β(zβ) = −(Pβ + pj + zβq). Here IQ’s are lower-point one-loop

integrands from Q-cut representation, and A’s are lower-point tree amplitudes. In fact,

– 7 –
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the one-loop integrand in (2.20) and (2.21) does not need to be in Q-cut representation,

i.e., any representation, such as the one obtained by Feynman diagrams, should be fine.

Thus these two terms can be expressed as summation over products of lower-point one-loop

integrand and tree amplitude. For other two terms R′B,1,R′B,2, it has already been shown

in (2.13) that they are summation over products of two lower-point tree amplitudes. The

important point is that for these two terms, the loop momentum ` is not scaled.

Now let us focus on the special cases R′′B,1,R′′′B,1, R′′B,2,R′′′B,2, and specifically take R′′B,1

R′′B,1 =
∑
h

A(`, p̂i(zγ),−K̂h
γ (zγ))

1

2` · pi
T (K̂−hγ (zγ), p̂j(zγ), {1, . . . , n}/{i, j},−`) (2.22)

as example. We need to exclude the contribution of massless bubbles from it. In order

to do so, let us introduce a scale deformation ` → α` as is done in the original Q-cut

construction. Since zγ = −2pi·`
2q·` , the scale deformation will not change the location of pole

zγ . Hence we can write R′′B,1 as

R′′B,1(α)=
∑
h

A(α`, p̂i(zγ),−K̂h
γ (zγ , α))

1

2`·pi
T (K̂−hγ (zγ , α), p̂j(zγ), {1, . . . , n}/{i, j},−α`) ,

(2.23)

where K̂γ(zγ , α) = α`+ pi + zγq.

Let us have a more detailed discussion on the T (K̂γ , p̂j , {1, . . . , n}/{i, j},−α`)
of (2.23). The on-shell condition of K̂γ is manifestly satisfied for any value of α, since

(remembering that q · pi = 0)

K̂2
γ =

(
α`+ pi −

2pi · `
2q · `

q

)2

= α(2pi · `)− α(2q · `)2pi · `
2q · `

= 0 . (2.24)

Having verified the on-shell condition, let us concentrate on the pole structure. We will

divide poles into three categories. If the pole does not contain −α` and K̂γ , then it could

either be the sum P of some ordinary external legs, or the one containing p̂j = pj + 2pi·`
2q·` q.

For the latter case, we have

a

(
P + pj +

2pi · `
2q · `

q

)2

= (P 2+2P ·pj)+(2P ·q)2pi · `
2q · `

=
2
(
(P 2 + 2P · pj)q + (2P · q)pi

)
· `

2q · `
.

(2.25)

So this pole is in the scale free form. Similarly, if p̂j appears in the numerator, it will give

a contribution of q · ` in the denominator. Anyway it is also in the scale free form. In other

words, these poles does not depend on α under the scale deformation.

If the pole contains −α` or K̂γ = α`+ p̂i, we can always use momentum conservation

to rewrite K̂ as the leg −α`, so that the pole is in the form containing −α`. For these

cases, we can have either (P − α`)2 = P 2 − α(2P · `) leading to a finite pole αP = P 2

2P ·` , or

(P + pj − zγq − α`)2 = P 2 + 2P · pj + (2P · q)zγ − 2α(P + pj + pi) · ` , (2.26)

leading to a finite pole

αP =
P 2 + 2P · pj + (2P · q)zγ

2(P + pi + pj) · `
. (2.27)

Note that both solutions depend on the loop momentum `.

– 8 –
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If the pole contains both −α` and K̂, then it has no dependence on α. This case

contains the contribution corresponding to massless bubbles which should be excluded. To

see this, let us recall that for the tree diagram that corresponding to massless bubbles

with massless external leg p̂i, the legs `, p̂i are attached to the same three-point vertex,

then they meet leg −` in the neighboring vertex. Explicitly for the tree diagrams of

T (K̂, p̂j , {1, . . . , n}/{i, j},−`), it corresponds to the diagrams where legs K̂ and −` are

attached to the same vertex.4 This means that the terms corresponding to the massless

bubbles are included in the boundary part.

Having understood poles of above three categories, we can now consider the following

contour integration∮
dα

α− 1
T (K̂γ(zγ , α), p̂j(zγ), {1, 2, . . . , n}/{i, j},−α`)

=

∮
dα

α− 1

N(−α`, p̂j)∏
λ1

(Pλ1 + pj − zγq)2
∏
λ2

(Pλ2 − α`)2
∏
λ3

(Pλ3 + pj − zγq − α`)2
,

(2.28)

where in the second line we have explicitly written down the above mentioned subtle factors

in the denominator. Now we consider its various pole contributions,

• The pole α = 1 gives the full un-deformed tree amplitude.

• There are poles at α = 0. Such poles will appear for the propagator (Pλ2−α`)2 when

P 2
λ2

= 0. The other pole (Pλ3 + pj − zγq − α`)2 can not contribute to α = 0 pole for

generic momentum configuration. From expression (2.28) we know that the residue

at α = 0 is scale free term and we can ignore them. Note that for this argument

to be true, we have assumed the factor A(α`, p̂i(zγ),−K̂γ(zγ , α)) in (2.23) would not

provide denominator that breaking the scale free form.

• For the pole at α = ∞, it contains the contribution from massless bubbles, which

should be excluded. However, It also contains other contributions which should be in-

cluded in the final result. But inspecting the expression (2.28), it can be checked that

all such contributions are scale free terms, and we can exclude all the contributions

at α =∞, letting the result to be valid up to some scale free terms.

With above consideration, we can claim that, the contributions of finite α poles are the

ones wee need for constructing the one-loop integrands, without the contributions that

corresponding to tadpole and massless bubbles, and valid up to some scale free terms.

Thus we can write T (K̂h
γ (zγ , α), p̂j(zγ), {1, 2, . . . , n}/{i, j},−α`) as

T =
∑

h′,λ∈P 2
λ 6=0

A(K̂h
γ (zγ , αλ), {β},K−h′λ (αλ))

1

P 2
λ − 2Pλ · `

A(−Kh′
λ (αλ), {λ},−αλ`) , (2.29)

4It is easy to see that if we perform the scale deformation `→ α`, such terms will not contain α in the

denominator.
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where αλ =
P 2
λ

2Pλ·` , Kλ(αλ) = Pλ − αλ`, {β} ∪ {λ} = {1, 2, . . . , n}/{i, j} + {ĵ}, and the

summation is over all possible splitting of {1, 2, . . . , n}/{i, j}+ {ĵ}, but with the condition

P 2
λ = 0, which means that the set {λ} should have more than one external leg.

With above result, we can finally write the R′′B,1 as

R′′B,1=
∑
h

A(`,p̂i,−K̂h
γ )

1

2`·pi

 ∑
h′,λ∈P 2

λ 6=0

A(K̂−hγ ,{β},K−h′λ )
1

P 2
λ−2Pλ·`

A(−Kh′
λ ,{λ},−αλ`)

,
(2.30)

where

zγ = −2pi · `
2q · `

, αλ =
P 2
λ

2Pλ · `
,

and p̂i = pi+zγq, K̂γ = αλ`+pi+zγq, Kλ = Pλ−αλ`, {β}∪{λ} = {1, 2, . . . , n}/{i, j}+{ĵ}.
Similarly, we have

R′′′B,1 =
∑
h

 ∑
h′,λ∈P 2

λ 6=0

A(αλ`,{λ},−Kh′

λ )
1

P 2
λ + 2Pλ · `

A(K−h
′

λ ,{β},−K̂h
γ )

 1

−2` · pj
A(K̂−hγ ,p̂j ,−`),

(2.31)

where

zγ =
2pj · `
2q · `

, αλ = −
P 2
λ

2Pλ · `
,

and p̂j = pj−zγq, Kλ = Pλ+αλ`, Kγ = −αλ`+pj−zγq, {λ}∪{β} = {1,2,...,n}/{i,j}+{̂i}.
We also have

R′′B,2 = R′′B,1|`→−` , R′′′B,2 = R′′′B,1|`→−` . (2.32)

To summarize, by BCFW deformation, we have expressed the n-point one-loop inte-

grand recursively as

In =
1

`2
(RQA +RQB) , (2.33)

where RQA = RQA,1 +RQA,2, and 1
`2
RQA,1, 1

`2
RQA,2 are defined as formulas (2.20), (2.21) respec-

tively, which are summation of products of lower-point tree amplitude with low-point one-

loop integrand of Q-cut construction. Also, RQB = R′B,1+R′′B,1+R′′′B,1+R′B,2+R′′B,2+R′′′B,2.

Among which, R′B,1,R′B,2 are defined in formulas (2.13), (2.18) respectively, which are

summation of products of two lower-point tree amplitudes, and R′′B,1,R′′′B,1,R′′B,2,R′′′B,2 are

defined in formulas (2.30), (2.31), (2.32) respectively, which are although products of three

lower-point tree amplitudes, but one of them is the three-point amplitude. It is also impor-

tant to notice how the forward singularities have been removed in various terms by various

methods.
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ℓ

p6

p1

p2 p3

p4

p5

ℓ

p1

p2

p3 p4

p5

p6

pσ1

pσ2

pσ3
pσ4

pσ5

pσ6 pσ1

pσ2 pσ3

pσ4

pσ5
pσ6

ℓ ℓ

Figure 1. Feynman diagrams of color-ordered one-loop six-point amplitude in scalar φ4 the-

ory. There are two triangle diagrams and twelve bubble diagrams with {σ1, . . . , σ6} ∈ Cyclic{1, 2,
3, 4, 5, 6}.

3 Some examples

In the previous section, we have presented a recursive formula for one-loop integrand con-

struction, based on the BCFW deformation and Q-cut construction. This new construction

shows that there are other ways to write down a well-defined one-loop integrand which is

valid up to scale free terms. The recursive formula (2.33) has given an alternative factor-

ization of one-loop integrand, and it should be equivalent to the result of original Q-cut

representation or Feynman diagram method, at least up to some scale free terms. For a

better understanding of this recursive formula, in this section, we shall present detailed

computation of some one-loop integrands by recursive formula (2.33), and demonstrate

their correspondence with results of original Q-cut construction and Feynman diagram

methods.

3.1 The one-loop six-point amplitude in scalar φ4 theory

In this example we consider the integrand of one-loop six-point amplitude in color ordered

scalar φ4 theory. For this theory, there is no cubic vertex, so the computation is relatively

simple since we do not need to use the scale deformation to remove singular terms. After

using appropriate BCFW deformation to get rid of boundary contribution, we need to

consider contributions from all detectable finite poles of both RQA and RQB . In order to

verify the equivalence term by term, we will compute the integrand by Feynman diagram

method, the original Q-cut representation and the recursive formula (2.33).

Feynman diagram method. There are in total fourteen Feynman diagrams as shown

in figure 1.

Using the Feynman rules, we directly get

IF =
1

`2(`− p12)2(`− p1234)2
+

1

`2(`− p61)2(`− p6123)2

+
1

`2(`− pσ1σ2)2

1

p2
σ3σ4σ5

+
1

`2(`− pσ1σ2)2

1

p2
σ4σ5σ6

for σ ∈ Cyclic{1, 2, 3, 4, 5, 6} .

(3.1)
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Applying the partial fraction identity

1

D1 · · ·Dm
=

m∑
i=1

1

Di

∏
j 6=i

1

Dj −Di

 , (3.2)

we can rewrite above result as

IF =

{
1

`2(−2`·p12+p2
12)(−2`·p1234+p2

1234)
+Cyclic{1,2,3,4,5,6}

}
+

{(
1

`2(−2`·p12+p2
12)

+
1

`2(−2`·p3456+p2
3456)

)(
1

p2
345

+
1

p2
456

)
+Cyclic{1,2,3,4,5,6}

}
.

(3.3)

When expanded, the first line contains 6 terms from triangle diagrams, and the second line

contains 4× 6 = 24 terms from bubble diagrams.

The Q-cut representation. The integrand is given by

IQ = A4(1,2,̂̀R,−̂̀L)
1

`2(−2` · p12 + p212)
A6(̂̀L,−̂̀R,3,4,5,6)

∣∣∣∣̂̀=α12`

+ Cyclic{1,2,3,4,5,6}

+ A6(1,2,3,4,̂̀R,−̂̀L)
1

`2(−2` · p1234 + p21234)
A4(̂̀L,−̂̀R,5,6)

∣∣∣∣̂̀=α1234`

+ Cyclic{1,2,3,4,5,6},

where αi1i2 =
p2i1i2

2`·pi1i2
, αi1i2i3i4 =

p2i1i2i3i4
2`·pi1i2i3i4

and `2 = 0. The six-point tree-level amplitude

in general dimension is

A6(1, 2, 3, 4, 5, 6) =
1

p2
123

+
1

p2
234

+
1

p2
345

. (3.4)

Inserting it back to above expression and rearranging some terms by cyclic invariance, we

get explicitly

IQ =

{(
2` · p12

`2(−2` · p12 + p2
12)
− 2` · p1234

`2(−2` · p1234 + p2
1234)

)
1

−(2` · p1234)p2
12 + (2` · p12)p2

1234

+ Cyclic{1, 2, 3, 4, 5, 6}
}

+

{(
1

`2(−2` · p12 + p2
12)

+
1

`2(−2` · p1234 + p2
1234)

)
·
(

1

p2
345

+
1

p2
456

)
+ Cyclic{1, 2, 3, 4, 5, 6}

}
. (3.5)

The second line contains 24 terms, which is identical to the second line of result (3.3) by

Feynman diagram method. The first line contains 12 terms and can be organized as 6

pairs. The sum of each pair leads to

(2`·p12)(−2`·p1234+p2
1234)−(2`·p1234)(−2`·p12+p2

12)

`2(−2`·p12+p2
12)(−2`·p1234+p2

1234)

1

−(2`·p1234)p2
12+(2`·p12)p2

1234

+· · ·

=
1

`2(−2`·p12+p2
12)(−2`·p1234+p2

1234)
+Cyclic{1, 2, 3, 4, 5, 6} , (3.6)

which equals to the 6 terms in the first line of result (3.3) by Feynman diagram method.
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Recursive formula. Now let us discuss the recursive construction of T Q and the inte-

grand I = 1
`2
T Q. Because of the φ4 theory, in this example only RQA,1,R

Q
A,2 and R′B,1,R′B,2

will contribute to the final integrand, while the contributions R′′B,1,R′′′B,1,R′′B,2,R′′′B,2 are

vanishing since the three-point amplitude vanishes. Since we are considering color-ordered

amplitude, T Q will be the sum of six diagrams,

T Q = T Q1 (`,−`, 1, 2, 3, 4, 5, 6) + T Q2 (`,−`, 2, 3, 4, 5, 6, 1) + T Q3 (`,−`, 3, 4, 5, 6, 1, 2)

+ T Q4 (`,−`, 4, 5, 6, 1, 2, 3) + T Q5 (`,−`, 5, 6, 1, 2, 3, 4) + T Q6 (`,−`, 6, 1, 2, 3, 4, 5) ,

(3.7)

where in each diagram, one internal line has been cut. In order to avoid boundary contri-

bution, the two momenta to be deformed should at least be separated by two legs. So we

can take the BCFW deformation as

p̂1 = p1 + zq , p̂4 = p4 − zq , q2 = p1,4 · q = 0 . (3.8)

Note that we are not necessary to take the same deformation for all T Qi ’s. In the practical

computation, we can take the most convenient BCFW deformation for each T Qi . But here

we use the same deformation for demonstration. Under this deformation, we then compute

the non-vanishing BCFW terms for each T Qi . Let us define

z123 ≡ −
p2

123

2q · p123
, z561 ≡ −

p2
561

2q · p561
, z612 ≡ −

p2
612

2q · p612
, z±12 ≡ −

±2` · p12 + p2
12

2q · (p12 ± `)
,

(3.9)

z±34 ≡ −
±2` · p34 + p2

34

2q · (p34 ± `)
, z±45 ≡ −

±2` · p45 + p2
45

2q · (p45 ± `)
, z±61 ≡ −

±2` · p61 + p2
61

2q · (p61 ± `)
. (3.10)

For tree diagram of T Q1 , there would be five contributing terms under this deformation.

The first is a RQA,2-type contribution,

T Q11 = A4(1̂, 2, ̂̀R,−̂̀L)
1

−2` · p1̂2 + p2
1̂2

A4(̂̀L,−̂̀R, 3, P̂ )
1

p2
123

A4(−P̂ , 4̂, 5, 6)

=
1

−2` · p1̂2 + p2
1̂2

1

p2
123

∣∣∣∣∣
z123

, (3.11)

where P̂ is understood to follow the momentum conservation of each sub-amplitude, and

z = z123, α =
p2
1̂2

2`·p1̂2

∣∣∣
z123

. The second is a RQA,1-type contribution,

T Q12 = A4(1̂, 2, 3, P̂ )
1

p2
123

A4(−P̂ , 4̂, ̂̀R,−̂̀L)
1

−2` · p
P̂ 4̂

+ p2
P̂ 4̂

A4(̂̀L,−̂̀R, 5, 6)

=
1

p2
123

1

2` · p56 + p2
56

=
1

−2` · p1234 + p2
1234

1

p2
123

, (3.12)
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where z = z123, α = − p256
2`·p56 . The third is a RQA,2-type contribution,

T Q13 = A4(1̂, 2, ̂̀R,−̂̀L)
1

−2` · p1̂2 + p2
1̂2

A4(̂̀L,−̂̀R, P̂ , 6)
1

p2
612

A4(−P̂ , 3, 4̂, 5)

=
1

−2` · p1̂2 + p2
1̂2

1

p2
612

∣∣∣∣∣
z612

, (3.13)

where z = z612, α =
p2
1̂2

2`·p1̂2

∣∣∣
z612

. The fourth is a RQA,1-type contribution,

T Q14 = A4(1̂, P̂ , ̂̀R,−̂̀L)
1

−2` · p
1̂P̂

+ p2
1̂P̂

A4(̂̀L,−̂̀R, 5, 6)
1

p2
561

A4(−P̂ , 2, 3, 4̂)

=
1

2` · p56 + p2
56

1

p2
561

=
1

−2` · p1234 + p2
1234

1

p2
561

, (3.14)

where z = z561, α = − p256
2`·p56 . Finally, the fifth is a R′B,2 contribution,

T Q15 = A4(−`, 1̂, 2, P̂ )
1

(p12−`)2
A6(−P̂ , 3, 4̂, 5, 6, `) =

1

(p12−`)2

(
1

p2
34̂5

+
1

p2
4̂56

+
1

(`+p56)2

)∣∣∣∣∣
`2=0,z=z−12

=
1

−2`·p12+p212

1

p2
34̂5

∣∣∣∣∣
z−12

+
1

−2`·p12+p212

1

p2
4̂56

∣∣∣∣∣
z−12

+
1

−2`·p12+p212

1

−2`·p1234+p21234

≡ T Q15,1+T Q15,2+T Q15,3 , (3.15)

where z = z−12.

So for T Q1 , in total we get seven terms. Let us see how these seven terms is corre-

sponding to the terms in Q-cut representation. T Q12 , T Q14 and T Q15,3 are evaluated with the

un-deformed momenta. It is simple to see that 1
`2
T Q15,3 corresponds to a term in the first

line of (3.3), while 1
`2
T Q12 , 1

`2
T Q14 also have their equivalent terms in the second line of (3.3),

1

`2
(T Q12 + T Q14 ) =

1

`2(−2` · p1234 + p2
1234)

(
1

p2
123

+
1

p2
234

)
. (3.16)

There are also four terms T Q11 , T Q13 , T Q15,1, T Q15,2 evaluated with deformed momenta. We have

T Q11 + T Q15,2 =
1

−2` · p1̂2 + p2
1̂2

1

p2
456

∣∣∣∣∣
z123

+
1

−2` · p12 + p2
12

1

p2
4̂56

∣∣∣∣∣
z−12

=
1

p2
456

1

(−2` · p12 + p2
12) + (2q·p12−2q·`)

2q·p456 p2
456

+
1

(−2` · p12 + p2
12)

1

p2
456 + 2q·p456

(2q·p12−2q·`)(−2` · p12 + p2
12)

,

– 14 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
8

as well as

T Q13 + T Q15,1 =
1

−2` · p1̂2 + p2
1̂2

1

p2
345

∣∣∣∣∣
z612

+
1

−2` · p12 + p2
12

1

p2
34̂5

∣∣∣∣∣
z−12

=
1

p2
345

1

(−2` · p12 + p2
12) + (2q·p12−2q·`)

2q·p345 p2
345

+
1

(−2` · p12 + p2
12)

1

p2
345 + 2q·p345

(2q·p12−2q·`)(−2` · p12 + p2
12)

.

Using the identity

1

A(B − λA)
+

1

B
(
A− 1

λB
) =

1

AB
, (3.17)

we arrive at

1

`2
(T Q11 + T Q15,2 + T Q13 + T Q15,1) =

1

`2(−2` · p12 + p2
12)

(
1

p2
345

+
1

p2
456

)
. (3.18)

The above computation shows the one-to-one correspondence between the results of Feyn-

man diagram method and the recursive formula. The contribution of 1
`2
T Q1 is equivalent

to the terms in (3.3) with a specific cyclic permutation.

Similarly, we can also check the equivalence of the other five T Qi with the terms in (3.3)

of the other cyclic permutation. For tree diagram of T Q2 , there would also be five contribut-

ing terms. The first is a RQA,2-type contribution,

T Q21 = A4(2,3,̂̀R,−̂̀L)
1

−2`·p23+p2
23

A4(̂̀L,−̂̀R,P̂ ,1̂)
1

p2
123

A4(−P̂ ,4̂,5,6) =
1

−2`·p23+p2
23

1

p2
123

,

where z = z123, α =
p223

2`·p23 . The second is a RQA,2-type contribution,

T Q22 =A4(2,P̂ ,̂̀R,−̂̀L)
1

−2`·p2P̂+p2
2P̂

A4(̂̀L,−̂̀R,6,1̂)
1

p2612
A4(−P̂ ,3,4̂,5)=

1

−2`·p234̂5+p2
234̂5

1

p2612

∣∣∣∣∣
z612

,

where z = z612, α = −
p2
61̂

2`·p61̂

∣∣∣
z612

. The third is a RQA,2-type contribution,

T Q23 =A4(P̂ ,5,̂̀R,−̂̀L)
1

−2`·p5P̂+p2
5P̂

A4(̂̀L,−̂̀R,6,1̂)
1

p2561
A4(−P̂ ,2,3,4̂)=

1

−2`·p234̂5+p2
234̂5

1

p2561

∣∣∣∣∣
z561

,

where z = z561, α = −
p2
61̂

2`·p61̂

∣∣∣
z561

. The fourth is a RQA,1-type contribution,

T Q24 = A4(5,6,1̂,P̂ )
1

p2561
A4(2,3,̂̀R,−̂̀L)

1

−2` · p23 + p223
A4(̂̀L,−̂̀R,4̂,−P̂ ) =

1

p2561

1

−2` · p23 + p223
,
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where z = z561, α =
p223

2`·p23 . Finally the fifth is a R′B,1-type contribution,

T Q25 = A4(6,1̂,`,P̂ )
1

(p61+`)2
A6(−P̂ ,−`,2,3,4̂,5) =

1

(p61+`)2

(
1

p2
234̂

+
1

p2
34̂5

+
1

(−`+p23)2

)∣∣∣∣∣
`2=0,z=z+61

=
1

−2`·p2345+p22345

1

p2
234̂

∣∣∣∣∣
z+61

+
1

−2`·p2345+p22345

1

p2
34̂5

∣∣∣∣∣
z+61

+
1

−2`·p2345+p22345

1

−2`·p23+p223

≡ T Q25,1+T Q25,2+T Q25,3,

where z = z+
61.

For tree diagrams of T Q3 , there are in total six contributing terms. The first is a

RQA,2-type contribution,

T Q31 = A4(3, P̂ , ̂̀R,−̂̀L)
1

−2` · p
3P̂

+ p2
3P̂

A4(̂̀L,−̂̀R, 1̂, 2)
1

p2
123

A4(−P̂ , 4̂, 5, 6)

=
1

−2` · p34̂56 + p2
34̂56

1

p2
123

∣∣∣∣∣
z123

,

where z = z123, α = −
p2
1̂2

2`·p1̂2

∣∣∣
z123

. The second is a RQA,2-type contribution,

T Q32 = A4(P̂ , 6, ̂̀R,−̂̀L)
1

−2` · p
P̂6

+ p2
P̂6

A4(̂̀L,−̂̀R, 1̂, 2)
1

p2
612

A4(−P̂ , 3, 4̂, 5)

=
1

−2` · p34̂56 + p2
34̂56

1

p2
612

∣∣∣∣∣
z612

,

where z = z612, α = −
p2
1̂2

2`·p1̂2

∣∣∣
z612

. The third is a RQA,1-type contribution,

T Q33 = A4(6, 1̂, 2, P̂ )
1

p2
612

A4(3, 4̂, ̂̀R,−̂̀L)
1

−2` · p34̂ + p2
34̂

A4(̂̀L,−̂̀R, 5,−P̂ )

=
1

p2
612

1

−2` · p34̂ + p2
34̂

∣∣∣∣∣
z612

,

where z = z612, α =
p2
34̂

2`·p34̂

∣∣∣
z612

. The fourth is a RQA,1-type contribution,

T Q34 = A4(5, 6, 1̂, P̂ )
1

p2
561

A4(3, 4̂, ̂̀R,−̂̀L)
1

−2` · p34̂ + p2
34̂

A4(̂̀L,−̂̀R,−P̂ , 2)

=
1

p2
561

1

−2` · p34̂ + p2
34̂

∣∣∣∣∣
z561

,
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where z = z561, α =
p2
34̂

2`·p34̂

∣∣∣
z561

. The fifth is a R′B,1-type contribution,

T Q35 = A4(1̂,2,`,P̂ )
1

(p12+`)2
A6(−P̂ ,−`,3,4̂,5,6) =

1

(p12+`)2

(
1

p2
34̂5

+
1

p2
4̂56

+
1

(−`+p34̂)2

)∣∣∣∣∣
`2=0,z=z+12

=
1

−2`·p3456+p23456

1

p2
34̂5

∣∣∣∣∣
z+12

+
1

−2`·p3456+p23456

1

p2
4̂56

∣∣∣∣∣
z+12

+
1

−2`·p3456+p23456

1

−2`·p34̂+p2
34̂

∣∣∣∣∣
z+12

≡ T Q35,1+T Q35,2+T Q35,3,

where z = z+
12. Finally the sixth is a R′B,1-type contribution,

T Q36 =A6(5,6,1̂,2,`,P̂ )
1

(p5612+`)2
A4(−P̂ ,−`,3,4̂)=

(
1

p2
561̂

+
1

p2
61̂2

+
1

(`+p1̂2)2

)
1

(p5612+`)2

∣∣∣∣∣
`2=0,z=−z−34

=
1

−2`·p34+p234

1

p2
561̂

∣∣∣∣∣
−z−34

+
1

−2`·p34+p234

1

p2
61̂2

∣∣∣∣∣
−z−34

+
1

−2`·p34+p234

1

−2`·p34̂56+p2
34̂56

∣∣∣∣∣
−z−34

≡T Q36,1+T Q36,2+T Q36,3, (3.19)

where z = −z−34.

For tree diagrams of T Q4 , there are in total five contributing terms. The first is a

RQA,2-type contribution,

T Q41 = A4(P̂ ,1̂,̂̀R,−̂̀L)
1

−2`·p1̂P̂+p2
1̂P̂

A4(̂̀L,−̂̀R,2,3)
1

p2123
A4(−P̂ ,4̂,5,6) =

1

−2`·p4561+p24561

1

p2123
,

where z = z123, α = − p223
2`·p23 . The second is a RQA,1-type contribution,

T Q42 = A4(1̂,2,3,P̂ )
1

p2123
A4(4̂,5,̂̀R,−̂̀L)

1

−2`·p4̂5+p2
4̂5

A4(̂̀L,−̂̀R,6,−P̂ ) =
1

p2123

1

−2`·p4̂5+p2
4̂5

∣∣∣∣∣
z123

,

where z = z123, α =
p2
4̂5

2`·p4̂5

∣∣∣
z123

. The third is a RQA,1-type contribution,

T Q43 = A4(6,1̂,2,P̂ )
1

p2612
A4(4̂,5,̂̀R,−̂̀L)

1

−2`·p4̂5+p2
4̂5

A4(̂̀L,−̂̀R,−P̂ ,3) =
1

p2612

1

−2`·p4̂5+p2
4̂5

∣∣∣∣∣
z612

,

where z = z612, α =
p2
4̂5

2`·p4̂5

∣∣∣
z612

. The fourth is a RQA,1-type contribution,

T Q44 = A4(5,6,1̂,P̂ )
1

p2561
A4(4̂,−P̂ ,̂̀R,−̂̀L)

1

−2`·p4̂P̂+p2
4̂P̂

A4(̂̀L,−̂̀R,2,3) =
1

p2561

1

−2`·p4561+p24561
,

where z = z561, α = − p223
2`·p23 . The fifth is a R′B,1-type contribution,

T Q45 =A6(6,1̂,2,3,`,P̂ )
1

(p6123+`)2
A4(−P̂ ,−`,4̂,5)=

(
1

p2
61̂2

+
1

p2
1̂23

+
1

(`+p23)2

)
1

(p6123+`)2

∣∣∣∣∣
`2=0,z=−z−45

=
1

−2`·p45+p245

1

p2
61̂2

∣∣∣∣∣
−z−45

+
1

−2`·p45+p245

1

p2
1̂23

∣∣∣∣∣
−z−45

+
1

−2`·p45+p245

1

−2`·p4561+p24561

≡T Q45,1+T Q45,2+T Q45,3,

where z = −z−45.
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For tree diagram of T Q5 , there are in total five contributing terms. The first is a

RQA,1-type contribution,

T Q51 = A4(1̂,2,3,P̂ )
1

p2
123

A4(5,6,̂̀R,−̂̀L)
1

−2`·p56+p2
56

A4(̂̀L,−̂̀R,−P̂ ,4̂) =
1

p2
123

1

−2`·p56+p2
56

,

where z = z123, α =
p256

2`·p56 . The second is a RQA,1-type contribution,

T Q52 =A4(6,1̂,2,P̂ )
1

p2612
A4(5,−P̂ ,̂̀R,−̂̀L)

1

−2`·p5P̂+p2
5P̂

A4(̂̀L,−̂̀R,3,4̂)=
1

p2612

1

−2`·p561̂2+p2
561̂2

∣∣∣∣∣
z612

,

where z = z612, α = −
p2
34̂

2`·p34̂

∣∣∣
z612

. The third is a RQA,1-type contribution,

T Q53 =A4(5,6,1̂,P̂ )
1

p2561
A4(−P̂ ,2,̂̀R,−̂̀L)

1

−2`·p2P̂+p2
2P̂

A4(̂̀L,−̂̀R,3,4̂)=
1

p2561

1

−2`·p561̂2+p2
561̂2

∣∣∣∣∣
z561

,

where z = z561, α = −
p2
34̂

2`·p34̂

∣∣∣
z561

. The fourth is a RQA,2-type contribution,

T Q54 = A4(5,6,̂̀R,−̂̀L)
1

−2`·p56+p2
56

A4(̂̀L,−̂̀R,1̂,P̂ )
1

p2
561

A4(−P̂ ,2,3,4̂) =
1

−2`·p56+p2
56

1

p2
561

,

where z = z561, α =
p256

2`·p56 . The fifth is a R′B,2-type contribution,

T Q55 =A6(−`,5,6,1̂,2,P̂ )
1

(p5612−`)2
A4(−P̂ ,3,4̂,`)=

(
1

p2
561̂

+
1

p2
61̂2

+
1

(p56−`)2

)
1

(p5612−`)2

∣∣∣∣∣
`2=0,z=−z+34

=
1

−2`·p5612+p25612

1

p2
561̂

∣∣∣∣∣
−z+34

+
1

−2`·p5612+p25612

1

p2
61̂2

∣∣∣∣∣
−z+34

+
1

−2`·p5612+p25612

1

−2`·p56+p256

≡T Q55,1+T Q55,2+T Q55,3,

where z = −z+
34.

For tree diagrams of T Q6 , there are in total six contributing terms. The first is a

RQA,1-type contribution,

T Q61 =A4(1̂,2,3,P̂ )
1

p2123
A4(6,−P̂ ,̂̀R,−̂̀L)

1

−2`·p6P̂+p2
6P̂

A4(̂̀L,−̂̀R,4̂,5)=
1

p2123

1

−2`·p61̂23+p2
61̂23

∣∣∣∣∣
z123

,

where z = z123, α = −
p2
4̂5

2`·p4̂5

∣∣∣
z123

. The second is a RQA,1-type contribution,

T Q62 =A4(6,1̂,2,P̂ )
1

p2612
A4(−P̂ ,3,̂̀R,−̂̀L)

1

−2`·p3P̂+p2
3P̂

A4(̂̀L,−̂̀R,4̂,5)=
1

p2612

1

−2`·p61̂23+p2
61̂23

∣∣∣∣∣
z612

,

where z = z612, α = −
p2
4̂5

2`·p4̂5

∣∣∣
z612

. The third is a RQA,2-type contribution,

T Q63 = A4(6,1̂,̂̀R,−̂̀L)
1

−2`·p61̂+p2
61̂

A4(̂̀L,−̂̀R,2,P̂ )
1

p2612
A4(−P̂ ,3,4̂,5) =

1

−2`·p61̂+p2
61̂

1

p2612

∣∣∣∣∣
z612

,
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where z = z612, α =
p2
61̂

2`·p61̂

∣∣∣
z612

. The fourth is a RQA,2-type contribution,

T Q64 = A4(6,1̂,̂̀R,−̂̀L)
1

−2`·p61̂+p2
61̂

A4(̂̀L,−̂̀R,P̂ ,5)
1

p2561
A4(−P̂ ,2,3,4̂) =

1

−2`·p61̂+p2
61̂

1

p2561

∣∣∣∣∣
z561

,

where z = z561, α =
p2
61̂

2`·p61̂

∣∣∣
z561

. The fifth is a R′B,2-type contribution,

T Q65 = A4(−`,6,1̂,P̂ )
1

(p61−`)2
A6(−P̂ ,2,3,4̂,5,`) =

1

(p61−`)2

(
1

p2
234̂

+
1

p2
34̂5

+
1

(`+p4̂5)2

)∣∣∣∣∣
`2=0,z=z−61

=
1

−2`·p61+p261

1

p2
234̂

∣∣∣∣∣
z−61

+
1

−2`·p61+p261

1

p2
34̂5

∣∣∣∣∣
z−61

+
1

−2`·p61+p261

1

−2`·p61̂23+p2
61̂23

∣∣∣∣∣
z−61

≡ T Q65,1+T Q65,2+T Q65,3,

where z = z−61. Finally, the sixth is a R′B,2-type contribution,

T Q66 = A6(−`, 6, 1̂, 2, 3, P̂ )
1

(p6123 − `)2
A4(−P̂ , 4̂, 5, `)

=

(
1

p2
61̂2

+
1

p2
1̂23

+
1

(−`+ p61̂)2

)
1

(p6123 − `)2

∣∣∣∣∣
`2=0,z=−z+45

=
1

−2` · p6123 + p2
6123

1

p2
61̂2

∣∣∣∣∣
−z+45

+
1

−2` · p6123 + p2
6123

1

p2
1̂23

∣∣∣∣∣
−z+45

+
1

−2` · p6123 + p2
6123

1

−2` · p61̂ + p2
61̂

∣∣∣∣∣
−z+45

≡ T Q66,1 + T Q66,2 + T Q66,3 ,

where z = −z+
45.

All the above results in total generate 48 terms. As is done for T Q1 , it can be checked

that, the 4 terms with un-deformed momenta

1

`2
(T Q15,3 + T Q25,3 + T Q45,3 + T Q55,3) (3.20)

=
1

`2(−2` · p12 + p2
12)(−2` · p1234 + p2

1234)
+

1

`2(−2` · p23 + p2
23)(−2` · p2345 + p2

2345)

+
1

`2(−2` · p45 + p2
45)(−2` · p4561 + p2

4561)
+

1

`2(−2` · p56 + p2
56)(−2` · p5612 + p2

5612)

reproduce the 4 four terms in the first line of (3.3). While

1

`2
(T Q35,3 + T Q36,3) =

1

`2(−2` · p34 + p2
34)(−2` · p3456 + p2

3456)
(3.21)
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and

1

`2
(T Q65,3 + T Q66,3) =

1

`2(−2` · p61 + p2
61)(−2` · p6123 + p2

6123)
(3.22)

reproduce the other 2 in the first line of (3.3).

For the comparison of the second line in (3.3), we have

1

`2
(T Q21 + T Q24 + T Q41 + T Q44 + T Q51 + T Q54 + T Q12 + T Q14 ) (3.23)

=

(
1

`2(−2` · p23 + p2
23)

+
1

`2(−2` · p4561 + p2
4561)

)(
1

p2
456

+
1

p2
561

)
+

(
1

`2(−2` · p56 + p2
56)

+
1

`2(−2` · p1234 + p2
1234)

)(
1

p2
123

+
1

p2
234

)
,

as well as

1

`2
(T Q11 + T Q15,2 + T Q13 + T Q15,1) +

1

`2
(T Q31 + T Q35,2 + T Q32 + T Q35,1)

=
1

`2(−2` · p12 + p2
12)

(
1

p2
345

+
1

p2
456

)
+

1

`2(−2` · p3456 + p2
3456)

(
1

p2
345

+
1

p2
456

)
,

(3.24)

and

1

`2
(T Q33 + T Q36,2 + T Q34 + T Q36,1) +

1

`2
(T Q52 + T Q55,2 + T Q53 + T Q55,1)

=
1

`2(−2` · p34 + p2
34)

(
1

p2
561

+
1

p2
612

)
+

1

`2(−2` · p5612 + p2
5612)

(
1

p2
561

+
1

p2
612

)
,

(3.25)

and

1

`2
(T Q42 + T Q45,2 + T Q43 + T Q45,1) +

1

`2
(T Q61 + T Q66,2 + T Q62 + T Q66,1)

=
1

`2(−2` · p45 + p2
45)

(
1

p2
612

+
1

p2
123

)
+

1

`2(−2` · p6123 + p2
6123)

(
1

p2
612

+
1

p2
123

)
,

(3.26)

and

1

`2
(T Q63 + T Q65,2 + T Q64 + T Q65,1) +

1

`2
(T Q22 + T Q25,2 + T Q23 + T Q25,1)

=
1

`2(−2` · p61 + p2
61)

(
1

p2
234

+
1

p2
345

)
+

1

`2(−2` · p2345 + p2
2345)

(
1

p2
234

+
1

p2
345

)
.

(3.27)

Thus we confirm the equivalence among results of Feynman diagram method, Q-cut repre-

sentation and recursive formula (2.33) term by term. In fact, by cyclic invariance, we can

– 20 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
8

̂1

2 ̂3

4

̂
P

−ℓℓ

̂1

2

4 ̂3

−ℓℓ

̂
P

4

̂1 2

̂3

̂
P

ℓ−ℓ

̂1

2 ̂3

4 ℓ−ℓ

̂
P

̂1

2 ̂3

4

̂
P

ℓ−ℓ

̂1 2

̂3

4
ℓ−ℓ

̂
P

4

̂1 2

̂3

̂
P

−ℓℓ

̂1

2

̂3

4

−ℓℓ

̂
P

(a) (b)

(d)(c)

Figure 2. Non-vanishing diagrams for (a) T1(`,−`, 1, 2, 3, 4), (b) T2(`,−`, 2, 3, 4, 1), (c) T3(`,−`, 3,
4, 1, 2), (d) T4(`,−`, 4, 1, 2, 3), under p1, p3 BCFW deformation.

rewrite the integrand (3.3) as

IF =

{
1

`2(−2` · p12 + p2
12)(−2` · p1234 + p2

1234)
+

1

`2(−2` · p12 + p2
12)

(
1

p2
345

+
1

p2
456

)
+

1

`2(−2` · p1234 + p2
1234)

(
1

p2
123

+
1

p2
123

)}
+ Cyclic{1, 2, 3, 4, 5, 6} . (3.28)

Then the recursive formula of tree diagram T Q(`,−`, σ1, σ2, σ3, σ4, σ5, σ6) reproduces the

result under the same ordering in IF . For instance, result of T Q(`,−`, 1, 2, 3, 4, 5, 6) re-

produces the above result in the curly bracket.

3.2 The one-loop four-point amplitude in scalar φ3 theory

Let us now discuss the integrand of one-loop four-point amplitude in color-ordered scalar

φ3 theory, so the tree diagram T Q have four contributions, denoted as

T Q = T Q1 (`,−`, 1, 2, 3, 4) + T Q2 (`,−`, 2, 3, 4, 1) + T Q3 (`,−`, 3, 4, 1, 2) + T Q4 (`,−`, 4, 1, 2, 3) .

(3.29)

The momentum deformation is taken as

p̂1 = p1 + zq , p̂3 = p3 − zq , q · p1,3 = q2 = 0 .

Under the given momentum deformation, each T Qi has two non-vanishing terms,5 as shown

in figure 2. Recall that the integrand of one-loop four-point amplitude in scalar φ3 theory,

after partial fraction identity, is given by [2]

IF (1, 2, 3, 4) =
1

`2

(
1

−2` · p1
+

1

p2
12

)
1

−2` · p12 + p2
12

(
1

2` · p4
+

1

p2
34

)
+ Cyclic{1, 2, 3, 4} .

(3.30)

5Since the one-loop integrand IQ2 = IQ3 = 0, the contributions to RQA,1,R
Q
A,2 will be zero. However, all

R′B,1, R′′B,1, R′′′B,1, R′B,2, R′′B,2, R′′′B,2 will contribute.
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We want to show that, the integrand given by recursive formula (2.33) is equivalent

to (3.30), up to certain scale free terms.

Let us start by computing the two diagrams in figure 2(a). The four-point tree ampli-

tude is

A4(1, 2, 3, 4) =
1

(p1 + p2)2
+

1

(p2 + p3)2
, (3.31)

and let us define

z±12 ≡ −
±2` · p12 + p2

12

2q · (p12 ± `)
, z±41 ≡ −

±2` · p41 + p2
41

2q · (p41 ± `)
, z1 ≡ −

2` · p1

2q · `
, z3 ≡

2` · p3

2q · `
.

(3.32)

The first diagram gives a R′B,2-type contribution,

T Q11 = A4(−`,1̂,2,P̂ )
1

−2` · p12 + p2
12

A4(−P̂ ,3̂,4,`)

=

(
1

−2` · p̂1
+

1

p̂2
12

)
1

−2` · p12 + p2
12

(
1

2` · p4
+

1

p̂2
34

)∣∣∣∣
z−12

≡ T Q11,1 + T Q11,2 + T Q11,3 + T Q11,4,

(3.33)

where z = z−12, and T Q11,i denotes the four terms after expanding the result. The second

diagram gives a R′′B,2-type contribution,

T Q12 = A3(−`, 1̂, P̂ )
1

−2` · p1
A3(−P̂ , 2, P ′) 1

2` · p̂34 + p̂2
34

A4(−P ′, 3̂, 4, α`)

=
1

−2` · p1

1

−2` · p̂12 + p̂2
12

(
1

α(2` · p4)
+

1

p̂2
34

)∣∣∣∣
z=z1,α=α12

, (3.34)

where P̂ , P ′ are understood to follow the momentum conservation of each sub-ampli-

tudes, and

α12 = − p̂2
34

2` · p̂34
=

p̂2
12

2` · p̂12

∣∣∣∣
z=z1

. (3.35)

In fact, when substituting α12 back in T Q12 , we get

T Q12 =
1

−2` · p1

1

−2` · p̂12 + p̂2
12

(
−−2` · p̂12 + p̂2

12

p̂2
12(2` · p4)

+
1

2` · p4
+

1

p̂2
34

)∣∣∣∣
z=z1

= − 1

−2` · p1

1

p̂2
12(2` · p4)

∣∣∣∣
z=z1

+
1

−2` · p1

1

−2` · p̂12 + p̂2
12

(
1

2` · p4
+

1

p̂2
34

)∣∣∣∣
z=z1

.

(3.36)

Note that

p̂2
12|z1 = p2

12 + z1(2q · p12) =
2K1 · `
2q · `

, K1 ≡ (p2
12)q − (2q · p12)p1 , (3.37)
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so the first term in (3.36) is a scale free term and can be ignored. Hence we have four

terms from T Q11 and two terms from T Q12 , and we want to compare the sum 1
`2

(T Q11,1 +T Q11,2 +

T Q11,3 + T Q11,4 + T Q12,1 + T Q12,2) with

1

`2

(
1

−2` · p1
+

1

p2
12

)
1

−2` · p12 + p2
12

(
1

2` · p4
+

1

p2
34

)
≡ IF1,1 + IF1,2 + IF1,3 + IF1,4 . (3.38)

To see the correspondence explicitly, firstly we have

T Q11,1+T Q12,1 (3.39)

=
1

−2`·p̂1
1

−2`·p12+p212

1

2`·p4

∣∣∣∣
z−12

+
1

−2`·p1
1

−2`·p̂12+p̂212

1

2`·p4

∣∣∣∣
z1

=

(
1

(−2`·p1)+λ(−2`·p12+p212)

1

(−2`·p12+p212)
+

1

(−2`·p1)

1

(−2`·p12+p212)+(−2`·p1)/λ

)
1

2`·p4

=
1

−2`·p1
1

−2`·p12+p212

1

2`·p4
,

where λ = 2q·`
2q·(p12−`) , and in the last line we have used the identity (3.17). So we see that

1

`2
(T Q11,1 + T Q12,1) = IF1,1 . (3.40)

Next, we have

1

`2
T Q11,3 − I

F
1,3 =

1

`2

(
1

p̂2
12

1

−2` · p12 + p2
12

1

2` · p4

∣∣∣∣
z−12

− 1

p2
12

1

−2` · p12 + p2
12

1

2` · p4

)

= − 2q · p12

`2(2K12 · `)(2` · p4)p2
12

, K12 ≡ (p2
12)q − (2q · p12)p12 . (3.41)

So 1
`2
T Q11,3 is equivalent to IF1,3, up to a scale free term. Similarly,

1

`2
T Q11,4 − I

F
1,4 =

1

`2

(
1

p̂2
12

1

−2` · p12 + p2
12

1

p̂2
34

∣∣∣∣
z−12

− 1

p2
12

1

−2` · p12 + p2
12

1

p2
34

)

= −(2q · p12)(2q · `)
`2(2K12 · `)2p2

12

+
(2q · p12)2

`2(2K12 · `)2p2
12

− 2q · p12

`2(2K12 · `)(p2
12)2

, (3.42)

which is also a scale free term.

Finally, we have

1

`2
(T Q11,2+T Q12,2)−IF1,2 (3.43)

=
1

`2

(
1

−2`·p̂1
1

−2`·p12+p212

1

p̂234

∣∣∣∣
z−12

+
1

−2`·p1
1

−2`·p̂12+p̂212

1

p̂234

∣∣∣∣
z1

− 1

−2`·p1
1

−2`·p12+p212

1

p234

)

=
1

`2

(
p212(2q·p12−2q·`)2(2`·p1)F3+p212(2q·`)2(−2`·p12+p212)F2−F1F2F3

p212(−2`·p1)(−2`·p12+p212)F1F2F3

)
= − (2q·p12)2

`2(2K1·`)(2K12·`)p212
,

– 23 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
8

where

F1 ≡ p2
12(2q · `)− (2` · p1)(2q · p12)− (2` · p2)(2q · `) , (3.44)

F2 ≡ 2K12 · ` = p2
12(2q · `)− (2` · p1)(2q · p12)− (2` · p2)(2q · p12) , (3.45)

F3 ≡ 2K1 · ` = p2
12(2q · `)− (2` · p1)(2q · p12) . (3.46)

Thus we conclude that

1

`2
T Q1 = IF1 +

2q · `
`2(−2` · p1)(2K1 · `)(2` · p4)

− 2q · p12

`2(2K12 · `)(2` · p4)p2
12

− (2q · p12)(2q · `)
`2(2K12 · `)2p2

12

+
(2q · p12)2

`2(2K12 · `)2p2
12

− 2q · p12

`2(2K12 · `)(p2
12)2
− (2q · p12)2

`2(2K1 · `)(2K12 · `)p2
12

.

It confirms that, the result of recursive formula (2.33) is equivalent to the result of Feynman

diagram method, up to some scale free terms.

The same computation can be applied to tree diagrams T Q2 , T Q3 and T Q4 . For T Q2 , we

have two contributing diagrams as shown in figure 2(b), and we get

T Q21 = A4(4,1̂,`,P̂ )
1

2` · p41 + p2
41

A4(−P̂ ,−`,2,3̂)

=

(
1

2` · p̂1
+

1

p̂2
41

)
1

−2` · p23 + p2
23

(
1

−2` · p2
+

1

p̂2
23

)∣∣∣∣
z+41

≡ T Q21,1 + T Q21,2 + T Q21,3 + T Q21,4,

(3.47)

as well as

T Q22 = A3(1̂, `, P̂ )
1

2` · p1
A4(−α`, 2, 3̂, P ′) 1

−2` · p̂23 + p̂2
23

A3(−P ′, 4,−P̂ )

=
2q · `

(2K ′1 · `)(2` · p1)(2` · p2)
+

1

2` · p1

(
1

−2` · p2
+

1

p̂2
23

)
1

−2` · p̂23 + p̂2
23

∣∣∣∣
z1

, (3.48)

where K ′1 ≡ (p2
23)q + (2q · p23)p1,

α23 =
p̂2

23

2` · p̂23

∣∣∣∣
z=z1

.

The first term in (3.48) is scale free, while the second and third terms are denoted as

T Q22,1, T
Q

22,2. The result 1
`2
T Q2 is equivalent to

1

`2

(
1

−2` · p2
+

1

p2
23

)
1

−2` · p23 + p2
23

(
1

2` · p1
+

1

p2
41

)
≡ IF2,1 + IF2,2 + IF2,3 + IF2,4 , (3.49)

up to some scale free terms. To see this, we have

1

`2
(T Q21,1 + T Q22,1) = IF2,1 , (3.50)

1

`2
T Q21,3 = IF2,2 +

2q · p23

`2(2K23 · `)(2` · p2)p2
23

, K23 ≡ (p2
23)q − (2q · p23)p23 ,

(3.51)

1

`2
T Q21,4 = IF2,4 −

2q · p23

`2(2K23 · `)(p2
23)2

+
(2q · p23)2

`2(2K23 · `)2p2
23

− (2q · p23)(2q · `)
`2(2K23 · `)2p2

23

, (3.52)
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and

1

`2
(T Q21,2 + T Q22,2) = IF2,3 −

(2q · p23)2

`2(2K ′1 · `)(2K23 · `)p2
23

. (3.53)

Thus confirming the equivalence.

For tree diagram T Q3 , we have two contributing diagrams as shown in figure 2(c), and

we get

T Q31 = A4(1̂,2,`,P̂ )
1

2` · p12 + p2
12

A4(−P̂ ,−`,3̂,4)

=

(
1

2` · p2
+

1

p̂2
12

)
1

−2` · p34 + p2
34

(
1

−2` · p̂3
+

1

p̂2
34

)∣∣∣∣
z+12

≡ T Q31,1 + T Q31,2 + T Q31,3 + T Q31,4,

(3.54)

as well as

T Q32 = A3(P̂ , 4, P ′)
1

2` · p̂12 + p̂2
12

A4(−P ′, 1̂, 2, α`) 1

−2` · p3
A3(−P̂ ,−`, 3̂)

=
2q · `

(2` · p2)(2` · p3)(2K3 · `)
+

1

−2` · p̂34 + p̂2
34

(
1

2` · p2
+

1

p̂2
12

)
1

−2` · p3

∣∣∣∣
z3

, (3.55)

where K3 ≡ (p2
34)q − (2q · p34)p3,

α34 =
p̂2

34

2` · p̂34

∣∣∣∣
z=z3

.

Again the first term in (3.55) is scale-free, while the second and third term are denoted as

T Q32,1, T
Q

32,2. The result 1
`2
T Q3 is equivalent to

1

`2

(
1

−2` · p3
+

1

p2
34

)
1

−2` · p34 + p2
34

(
1

2` · p2
+

1

p2
12

)
≡ IF3,1 + IF3,2 + IF3,3 + IF3,4 , (3.56)

up to some scale free terms, which can be confirmed by

1

`2
(T Q31,1 + T Q32,1) = IF3,1 , (3.57)

1

`2
T Q31,2 = IF3,3 −

2q · p34

`2(2K34 · `)(2` · p2)p2
34

, K34 ≡ (p2
34)q − (2q · p34)p34 ,

(3.58)

1

`2
T Q31,4 = IF3,4 −

2q · p34

`2(2K34 · `)(p2
34)2

+
(2q · p34)2

`2(2K34 · `)2p2
34

− (2q · p34)(2q · `)
`2(2K34 · `)2p2

34

, (3.59)

and

1

`2
(T Q31,3 + T Q32,2) = IF3,2 −

(2q · p34)2

`2(2K3 · `)(2K34 · `)p2
34

. (3.60)
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For tree diagram T Q4 , we have two contributing diagrams as shown in figure 2(d), and

we get

T Q41 = A4(−`,4,1̂,P̂ )
1

−2` · p41 + p2
41

A4(−P̂ ,2,3̂,`)

=

(
1

−2` · p4
+

1

p̂2
41

)
1

−2` · p41 + p2
41

(
1

2` · p̂3
+

1

p̂2
23

)∣∣∣∣
z−41

≡ T Q41,1 + T Q41,2 + T Q41,3 + T Q41,4,

(3.61)

as well as

T Q42 = A4(−α`, 4, 1̂, P ′) 1

−2` · p̂41 + p̂2
41

A3(−P ′, 2, P̂ )
1

2` · p3
A3(−P̂ , 3̂, `)

=
2q · `

(2` · p4)(2` · p3)(2K ′3 · `)
+

(
1

−2` · p4
+

1

p̂2
41

)
1

−2` · p̂41 + p̂2
41

1

2` · p3

∣∣∣∣
z3

, (3.62)

where K ′3 ≡ (p2
41)q + (2q · p41)p3,

α34 =
p̂2

41

2` · p̂41

∣∣∣∣
z=z3

.

The first term in (3.62) is scale free, while the second and third terms are denoted as

T Q42,1, T
Q

42,2. The result 1
`2
T Q4 is equivalent to

1

`2

(
1

−2` · p4
+

1

p2
41

)
1

−2` · p41 + p2
41

(
1

2` · p3
+

1

p2
23

)
≡ IF4,1 + IF4,2 + IF4,3 + IF4,4 , (3.63)

up to some scale free terms, which can be confirmed by

1

`2
(T Q41,1 + T Q42,1) = IF4,1 , (3.64)

1

`2
T Q41,2 = IF4,2 +

2q · p41

`2(2K41 · `)(2` · p4)p2
41

, K41 ≡ (p2
41)q − (2q · p41)p41 ,

(3.65)

1

`2
T Q41,4 = IF4,4 −

2q · p41

`2(2K41 · `)(p2
41)2

+
(2q · p41)2

`2(2K41 · `)2p2
41

− (2q · p41)(2q · `)
`2(2K41 · `)2p2

41

, (3.66)

and

1

`2
(T Q41,3 + T Q42,2) = IF4,3 −

(2q · p41)2

`2(2K ′3 · `)(2K41 · `)p2
41

. (3.67)

The above detailed computations shows that, the result of recursive formula (2.33) is

equivalent to the one of Feynman diagram method up to some scale free terms.
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3.3 The one-loop four-point amplitude in Yang-Mills theory

Now let us take a quick glance on the well studied example, the one-loop four-gluon all

plus helicity amplitude A1-loop(1+, 2+, 3+, 4+) in planar Yang-Mills theory. The integrand

of the original Q-cut representation, after dropping some scale free terms, takes [1]

IQ ∼ [1 2][3 4]

〈1 2〉〈3 4〉
(µ2 − `2)2

`2(2` · p1)(p2
12 − 2` · p12)(−2` · p4)

+ Cyclic{1, 2, 3, 4} . (3.68)

From the perspective of recursive formula (2.33), the tree diagram T Q is a sum over

four tree diagrams, denoted as

T Q = T Q1 (`,−`, 1+, 2+, 3+, 4+) + T Q2 (`,−`, 2+, 3+, 4+, 1+)

+ T Q3 (`,−`, 3+, 4+, 1+, 2+) + T Q4 (`,−`, 4+, 1+, 2+, 3+) . (3.69)

To compute T Qi ’s, we should choose an appropriate momentum deformation. Different

momentum deformation leads to different factorization of these tree amplitudes. Although

the final result will be the same, the intermediate terms will be quite different. We can

choose a deformation such that the computation is as simple as possible. Furthermore, the

four T Qi ’s are in fact independent, so each T Qi could have its own momentum deformation,

which makes the computation more flexible. In the following computations, we will take

advantage of this freedom.

Let us now take T Q1 (`,−`, 1+, 2+, 3+, 4+) as example, and assume the internal loop to

be massive scalar for simplicity.6 Let us choose the following momentum deformation,

|2̂〉 = |2〉 − z|3〉 , |3̂] = |3] + z|2] . (3.70)

Since by definition the one-loop integrand IQ3 = 0, we get only one R′B,2-type contribution,

T Q1 =
∑
h

A(−`s, 1+, 2̂+, P̂ h)
1

p2
12 − 2` · p12

A(−P̂−h, 3̂+, 4+, `s) , (3.71)

where the helicity sum is over all possible states (+,−, s). From the results of tree-level

amplitudes in [2], we get the non-vanishing contribution

A(−`s,1+,2̂+,P̂ s)
1

p2
12−2`·p12

A(−P̂ s,3̂+,4+,`s) =
[2 1]

〈1 2̂〉
µ2−`2

〈1|−`|1]

1

p2
12−2`·p12

[4 3̂]

〈3 4〉
µ2−`2

〈4|`|4]
,

(3.72)

where z =
p212−2`·p12
2q·(p12−`) . Using the momentum conservation identity

p1 + p̂2 = −(p̂3 + p4) → (p1 + p̂2)2 = (p̂3 + p4)2 → [4 3̂]

〈1 2̂〉
=

[2 1]

〈3 4〉
=

[4 3]

〈1 2〉
, (3.73)

we instantly get

T Q1 =
[1 2][3, 4]

〈1 2〉〈3 4〉
(µ2 − `2)2

(−2` · p1)(p2
12 − 2` · p12)(2` · p4)

. (3.74)

6It is massive in 4-dim, but null in higher dimension.
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So 1
`2
T Q1 equals to a term in (3.69). Similarly, the BCFW deformation

T Q2 (`,−`, 2+, 3̂+, 4̂+, 1+) , T Q3 (`,−`, 3+, 4̂+, 1̂+, 2+) , T Q4 (`,−`, 4+, 1̂+, 2̂+, 3+)

will produce the other three terms respectively. This simple example is illustrative to

show how the terms computed by recursive formula (2.33) are corresponding to the terms

computed by the original Q-cut representation.

4 Conclusion

In this note, we have taken initial steps for constructing one-loop integrand by combin-

ing the BCFW deformation and the Q-cut construction. We have obtained a recursive

formula (2.33), where the one-loop integrand is given by one-loop integrands with lower

number of external legs, and tree-level amplitudes. We have presented explicit examples

to show the equivalence of our result with the one given by Feynman diagrams and Q-cut

representation, up to scale free terms.

There are several possible applications of the recursive formula (2.33). The first one

is to consider the one-loop factorization limit Atree
L A1-loop

R + A1-loop
L Atree

R + Atree
L SAtree

R . It

is easy to see that, in the recursive formula, RQA contributes to the first two factorization

limits, while RQB contributes to the third term. The RQB part contains six terms, so naively

the kernel S could be very complicated. However, it could be the case that some terms do

not contribute, or their contributions simplify a lot in the factorization limit. It would be

interesting to investigate if we can find some compact form for S or not. Using the recursive

formula, we can also study the behavior of integrands in certain limits, for instance the

single/double soft limit and the one-loop split function. It is also possible to study the

rational part of one-loop amplitudes when constructed using 4-dimensional unitarity cut

method, especially if we could write down some recursive relation for the rational part,

based on our formula. Finally, generalizations to higher loops and massive external legs,

which are a very important open questions in the original Q-cut representation, deserves

to be investigated along this direction as well.

Acknowledgments

BF, RH and ML is supported by Qiu-Shi Funding and the National Natural Science Foun-

dation of China (NSFC) with Grant No. 11135006, No. 11125523 and No. 11575156. RH

would also like to acknowledge the supporting from Chinese Postdoctoral Administrative

Committee. SH acknowledges support from the Thousand Young Talents program and the

Key Research Program of Frontier Sciences of CAS (Grant No. QYZDBSSW-SYS014).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 28 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
1
(
2
0
1
7
)
0
0
8

References

[1] C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, S. Caron-Huot, P.H. Damgaard and

B. Feng, New Representations of the Perturbative S-matrix, Phys. Rev. Lett. 116 (2016)

061601 [arXiv:1509.02169] [INSPIRE].

[2] R. Huang, Q. Jin, J. Rao, K. Zhou and B. Feng, The Q-cut Representation of One-loop

Integrands and Unitarity Cut Method, JHEP 03 (2016) 057 [arXiv:1512.02860] [INSPIRE].

[3] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop Integrands for Scattering Amplitudes

from the Riemann Sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321]

[INSPIRE].

[4] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann

sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].

[5] C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng,

Integration Rules for Loop Scattering Equations, JHEP 11 (2015) 080 [arXiv:1508.03627]

[INSPIRE].

[6] S. He and E.Y. Yuan, One-loop Scattering Equations and Amplitudes from Forward Limit,

Phys. Rev. D 92 (2015) 105004 [arXiv:1508.06027] [INSPIRE].

[7] F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye

orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].

[8] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions,

Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

[9] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and

Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[10] F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From

Scattering Equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].

[11] F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To

Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

[12] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-Loop Scattering Amplitudes from the

Riemann Sphere, arXiv:1607.08887 [INSPIRE].

[13] C. Cardona and H. Gomez, Elliptic scattering equations, JHEP 06 (2016) 094

[arXiv:1605.01446] [INSPIRE].

[14] H. Gomez, Λ scattering equations, JHEP 06 (2016) 101 [arXiv:1604.05373] [INSPIRE].

[15] F. Cachazo, S. He and E.Y. Yuan, One-Loop Corrections from Higher Dimensional Tree

Amplitudes, JHEP 08 (2016) 008 [arXiv:1512.05001] [INSPIRE].

[16] B. Feng, CHY-construction of Planar Loop Integrands of Cubic Scalar Theory, JHEP 05

(2016) 061 [arXiv:1601.05864] [INSPIRE].

[17] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

[18] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in

Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[19] S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevLett.116.061601
http://dx.doi.org/10.1103/PhysRevLett.116.061601
https://arxiv.org/abs/1509.02169
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02169
http://dx.doi.org/10.1007/JHEP03(2016)057
https://arxiv.org/abs/1512.02860
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02860
http://dx.doi.org/10.1103/PhysRevLett.115.121603
https://arxiv.org/abs/1507.00321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00321
http://dx.doi.org/10.1007/JHEP03(2016)114
https://arxiv.org/abs/1511.06315
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06315
http://dx.doi.org/10.1007/JHEP11(2015)080
https://arxiv.org/abs/1508.03627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03627
http://dx.doi.org/10.1103/PhysRevD.92.105004
https://arxiv.org/abs/1508.06027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.06027
http://dx.doi.org/10.1103/PhysRevD.90.065001
https://arxiv.org/abs/1306.6575
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6575
http://dx.doi.org/10.1103/PhysRevLett.113.171601
https://arxiv.org/abs/1307.2199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
http://dx.doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
http://dx.doi.org/10.1007/JHEP01(2015)121
https://arxiv.org/abs/1409.8256
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8256
http://dx.doi.org/10.1007/JHEP07(2015)149
https://arxiv.org/abs/1412.3479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3479
https://arxiv.org/abs/1607.08887
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.08887
http://dx.doi.org/10.1007/JHEP06(2016)094
https://arxiv.org/abs/1605.01446
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01446
http://dx.doi.org/10.1007/JHEP06(2016)101
https://arxiv.org/abs/1604.05373
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.05373
http://dx.doi.org/10.1007/JHEP08(2016)008
https://arxiv.org/abs/1512.05001
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05001
http://dx.doi.org/10.1007/JHEP05(2016)061
http://dx.doi.org/10.1007/JHEP05(2016)061
https://arxiv.org/abs/1601.05864
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05864
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
https://arxiv.org/abs/hep-th/0412308
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412308
http://dx.doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/hep-th/0501052
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501052
http://dx.doi.org/10.1007/JHEP05(2011)080
https://arxiv.org/abs/1007.3224
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3224


J
H
E
P
0
1
(
2
0
1
7
)
0
0
8

[20] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop

Integrand For Scattering Amplitudes in Planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[21] R.H. Boels, On BCFW shifts of integrands and integrals, JHEP 11 (2010) 113

[arXiv:1008.3101] [INSPIRE].

[22] N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP

04 (2008) 076 [arXiv:0801.2385] [INSPIRE].

[23] C. Cheung, On-Shell Recursion Relations for Generic Theories, JHEP 03 (2010) 098

[arXiv:0808.0504] [INSPIRE].

[24] B. Feng, J. Wang, Y. Wang and Z. Zhang, BCFW Recursion Relation with Nonzero

Boundary Contribution, JHEP 01 (2010) 019 [arXiv:0911.0301] [INSPIRE].

[25] Q. Jin and B. Feng, Recursion Relation for Boundary Contribution, JHEP 06 (2015) 018

[arXiv:1412.8170] [INSPIRE].

[26] Q. Jin and B. Feng, Boundary Operators of BCFW Recursion Relation, JHEP 04 (2016) 123

[arXiv:1507.00463] [INSPIRE].

[27] B. Feng, K. Zhou, C. Qiao and J. Rao, Determination of Boundary Contributions in

Recursion Relation, JHEP 03 (2015) 023 [arXiv:1411.0452] [INSPIRE].

[28] B. Feng, J. Rao and K. Zhou, On Multi-step BCFW Recursion Relations, JHEP 07 (2015)

058 [arXiv:1504.06306] [INSPIRE].

[29] C. Cheung, C.-H. Shen and J. Trnka, Simple Recursion Relations for General Field Theories,

JHEP 06 (2015) 118 [arXiv:1502.05057] [INSPIRE].

[30] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-Shell Recursion Relations

for Effective Field Theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309]

[INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1007/JHEP11(2010)113
https://arxiv.org/abs/1008.3101
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3101
http://dx.doi.org/10.1088/1126-6708/2008/04/076
http://dx.doi.org/10.1088/1126-6708/2008/04/076
https://arxiv.org/abs/0801.2385
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2385
http://dx.doi.org/10.1007/JHEP03(2010)098
https://arxiv.org/abs/0808.0504
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0504
http://dx.doi.org/10.1007/JHEP01(2010)019
https://arxiv.org/abs/0911.0301
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0301
http://dx.doi.org/10.1007/JHEP06(2015)018
https://arxiv.org/abs/1412.8170
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8170
http://dx.doi.org/10.1007/JHEP04(2016)123
https://arxiv.org/abs/1507.00463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00463
http://dx.doi.org/10.1007/JHEP03(2015)023
https://arxiv.org/abs/1411.0452
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0452
http://dx.doi.org/10.1007/JHEP07(2015)058
http://dx.doi.org/10.1007/JHEP07(2015)058
https://arxiv.org/abs/1504.06306
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06306
http://dx.doi.org/10.1007/JHEP06(2015)118
https://arxiv.org/abs/1502.05057
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05057
http://dx.doi.org/10.1103/PhysRevLett.116.041601
https://arxiv.org/abs/1509.03309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03309

	Introduction
	The derivation of recursion relation
	Step one: dimensional deformation
	Step two: BCFW deformation
	Step three: scale deformation

	Some examples
	The one-loop six-point amplitude in scalar phi**4 theory
	The one-loop four-point amplitude in scalar phi**3 theory
	The one-loop four-point amplitude in Yang-Mills theory

	Conclusion

