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Starting from the WKB approximation, a new barrier penetration formula is proposed for
potential barriers containing a long-range Coulomb interaction. This formula is especially
proper for the barrier penetration with penetration energy much lower than the Coulomb

barrier. The penetrabilities calculated from the new formula agree well with the results
from the WKB method. As a first attempt, this new formula is used to evaluate α-decay
half-lives of atomic nuclei and a good agreement with the experiment is obtained.
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1. Introduction

As a common quantum phenomenon, the tunneling through a potential barrier

plays a very important role in the microscopic world and has been studied exten-

sively since the birth of quantum mechanics. One of the earliest applications of

quantum tunneling is the explanation of α-decays in atomic nuclei. The quantum

tunneling effect governs also many other nuclear processes such as fission and fu-

sion. In particular, a lot of new features are revealed in sub-barrier fusion reactions

which are closely connected with the tunneling phenomena.1–4

For most of the potential barriers, the penetrability cannot be calculated ana-

lytically.5 Among those potentials for which analytical solutions can be obtained,

the parabolic potential6,7 is the mostly used in the study of nuclear fusion. By

approximating the Coulomb barrier to a parabola, Wong derived an analytic ex-

pression for the fusion cross section8 which is widely adopted today in the study

of heavy ion reactions (see, e.g., recent Refs. 9, 10). The parabolic approximation
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works remarkably well both for the penetrability and for the fusion cross section at

energies around or above the Coulomb barrier.11

Apparently the parabolic approximation breaks down at energies much smaller

than the barrier height due to the long-range Coulomb interaction. One may cal-

culate the penetration probability numerically by using the path integral method

or the WKB approximation. However, it is highly desirable to have an analytical

expression for the barrier penetrability when one introduces an energy-dependent

one-dimensional potential barrier12 or barrier distribution functions.13–17

In the present work, we derived a new barrier penetration formula based on the

WKB approximation. The influence of the long Coulomb tail in the barrier potential

is taken into accout properly. Therefore this formula is especially applicable to the

barrier penetration with penetration energy much lower than the Coulomb barrier.

As a first attempt and a test study, we apply this new formula to evaluate

α-decay half-lives of atomic nuclei. For the α-decay, the penetrability is usually

calculated with the WKB approach,18–20 in other words, integrating numerically

the wave number within two turning points at which the interaction potential is

equal to the Q-value of the α-decay. We will show that the present analytical formula

reproduces the experimental results very well, especially for spherical nuclei.

The paper is organized as follows. In Sec. 2 we present the new barrier pene-

tration formula. The validity of the new formula is investigated and its application

to α-decays are given in Sec. 3. Finally in Sec. 4 we summarize our work. In the

Appendix, the detailed derivation of the new penetration formula is given.

2. Formalism

When the penetration energy is well below the Coulomb barrier, the barrier pene-

trability formula derived from the WKB approximation reads,

P (E) = exp

[

−2

∫ Rout

Rin

√

2µ

~2
(V (R) − E) dR

]

, (1)

where the potential usually consists of three parts, the nuclear, the Coulomb, and

the centrifugal potentials,

V (R) = VN(R) + VC(R) +
L(L + 1)

2µR2
. (2)

Rin and Rout are the inner and outer turning points determined by the relation

V (R) = E.

By approximating V (R) to a parabola with the height VB and the width ~ω,

Eq. (1) is reduced as7

P (E) = exp

[

− 2π

~ω
(VB − E)

]

, (3)

which has been widely used in the study of heavy ion reactions.
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Because of the long-range Coulomb interaction, the Coulomb barrier given in

Eq. (2) has a long tail and is asymmetric. Thus for the penetration well below

the barrier, the parabolic approximation is not valid. We may divide the potential

barrier into two parts at the barrier position RB. The first part of V (R) with

Rin < R < RB could still be approximated by half of a parabola and we need to

evaluate the integration in Eq. (1) in the range RB < R < Rout only. For S wave,

the integral in Eq. (1) is evaluated as,

P (E) = exp[−(x1 + x2)] , (4)

with

x1 ≡ 2

∫ RB

Rin

√

2µ

~2
(V (R) − E) dR

≈ π

~ω
(VB − E) , (5)

under the parabolic approximation and

x2 ≡ 2

∫ Rout

RB

√

2µ

~2
(V (R) − E) dR

≈ 2kRB

[

τ

(

π

2
− arcsin

√

1

τ

)

−
√

τ − 1

]

+
ka√
τ − 1

V0

E
ln[1 + e(R0−RB)/a] , (6)

where k =
√

2µE/~ and τ = VC(RB)/E. The details of the derivation of Eq. (6) are

given in the Appendix. It should be mentioned that in the derivation of Eq. (6), a

Woods–Saxon form is used for VN(R).

3. Results and Discussions

In this section, we use the new formula to study the typical barrier penetration

problem, α-decays of atomic nuclei. The α-decay half-life is related to the decay

width Γ by20–22

T1/2 =
~ ln 2

Γ
. (7)

The decay width Γ is calculated as20

Γ = ~ νSP (Q) = ~ ξP (Q) , (8)

where ν is the assaults frequency of α particle on the barrier, S the spectroscopic

or preformation factor and P (Q) the penetrability with Q the α decay Q-value. For

spherical nuclei, ξ is parametrized as20

ξ = (6.1814 + 0.2988 A−1/6) × 1019 s−1 , (9)

and the penetrability will be calculated with Eqs. (4)–(6).
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For the α-nuclear interaction, we adopt the Coulomb and the Woods–Saxon

potentials and parameters proposed in Ref. 20,

VC(R) =



















2Ze2

R
, R ≥ Rm ,

Ze2

Rm

[

3 − R2

R2
m

]

, R ≤ Rm ,

(10)

and

VN(R) =
V (A, Z, Q)

1 + exp[(R − Rm)/a]
, (11)

with A and Z the mass and charge numbers of the daughter nucleus and Q the α

decay energy. The parameters in these potentials and given in Eq. (9) were obtained

by fitting α-decay half-lives and cross section data for several fusion reactions.20 It

can be easily verified that the position of the Coulomb barrier RB is larger than

Rm thus the use of the Coulomb force given in Eq. (A.3) is valid.

3.1. Validity of the new formula

Before the new formula is used to study α-decays, we investigate in details its

validity. First we examine how the effective potential connected with the new for-

mula equation (6) is close to the exact one. Two extreme examples are chosen for

this purpose, 212Po which has a very short half-life 3.02× 10−7 s and 144Nd which

has a quite long half-life 7.24 × 1022 s.23 The barrier potential V (R) is shown in
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Fig. 1. (color online) The barrier potential between the α and the daughter nucleus for 212Po
and 144Nd. The solid curve shows the exact potential V (R) and the dashed curve stands for the
effective potential given in Eq. (12) associated with the parabolic approximation equation (5) and
the new barrier penetration formula equation (6). Note that the two curves are almost identical
to each other.

In
t. 

J.
 M

od
. P

hy
s.

 E
 2

01
0.

19
:3

59
-3

70
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 "

C
H

IN
E

SE
 A

C
A

D
E

M
Y

 O
F 

SC
IE

N
C

E
S,

 B
E

IJ
IN

G
 T

H
E

 L
IB

R
A

R
Y

" 
on

 0
9/

21
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



April 16, 2010 9:5 WSPC/143-IJMPE S0218301310014790

A New Barrier Penetration Formula and Its Application to α-Decay Half-Lives 363

Fig. 1 for these two systems. The effective potential,

Veff(R) =























VB − 1

2
µω2(R − RB)2, Rin < R < RB ,

VC(R) +
VC(R) − E

VC(RB) − E
VN(R) +

1

4

V 2
N(R)

VC(RB) − E
, RB < R < RV ,

VC(R), RV < R < Rout ,

(12)

is also shown for comparison. RV ≈ 9 –12 fm is the radial position outside of which

the nuclear part of the α-nucleus potential could be neglected (see the Appendix for

more details). In our calculations, the width of the parabolic potential is obtained

by fitting the barrier potential from the inner turning point Rin to the position of

the barrier RB. Unlike the full parabolic approximation, the effective potential is

asymmetric and coincides with the exact potential very well, especially the outer

side of the barrier which critically influences α-decays.

Table 1. Comparison of the results for the barrier penetration probability for α decays in Po
isotopes (charge and mass numbers of the α emitter are listed in the first and the second entries).

Zp Ap Qα (MeV) xWKB
1 xNew

1 = xPara
1 xWKB

2 xNew
2

84 190 7.64 4.9808 5.0816 34.9523 35.0751
84 191 7.48 5.0093 5.1146 36.0311 36.1527
84 192 7.32 5.0384 5.1482 37.1506 37.2712
84 193 7.10 5.0896 5.2031 38.7753 38.8944
84 194 7.00 5.0980 5.2165 39.5213 39.6397
84 195 6.75 5.1605 5.2823 41.5276 41.6445
84 196 6.66 5.1664 5.2931 42.2564 42.3725
84 197 6.41 5.2292 5.3592 44.4401 44.5546
84 198 6.31 5.2396 5.3743 45.3311 45.4449
84 199 6.08 5.2957 5.4338 47.5227 47.6352
84 200 5.99 5.3036 5.4463 48.3954 48.5072
84 201 5.81 5.3429 5.4894 50.2458 50.3564
84 202 5.70 5.3585 5.5093 51.4094 51.5193
84 203 5.50 5.4050 5.5594 53.6532 53.7618
84 204 5.49 5.3875 5.5468 53.7347 53.8430
84 205 5.32 5.4245 5.5875 55.7496 55.8569
84 206 5.33 5.4015 5.5693 55.5907 55.6978
84 207 5.22 5.4191 5.5908 56.9347 57.0410
84 208 5.22 5.4007 5.5769 56.8997 57.0058
84 210 5.41 5.3038 5.4892 54.4768 54.5836
84 212 8.95 4.1395 4.3264 26.3317 26.4569
84 213 8.54 4.2585 4.4498 28.5307 28.6533
84 214 7.83 4.4720 4.6690 32.8310 32.9495
84 215 7.53 4.5552 4.7559 34.8360 34.9528
84 216 6.91 4.7391 4.9445 39.4763 39.5896
84 218 6.11 4.9669 5.1798 46.5717 46.6806

Note: The meaning of x1,2 is given in Eq. (4). The superscript “WKB” means the penetrability
calculated from the WKB approach, “Para” from the parabolic approximation in Eq. (5), and
“New” from the new formulas equation (6).
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In order to examine more closely the accuracy of the new formula, we list the

calculated penetration probabilities for α decays of polonium isotopes in Table 1.

The values in the exponential of Eq. (4), x1 and x2, calculated from the WKB

approach, the parabolic approximation and the new formula are compared. One

finds good agreement between the results from the new formula and the WKB

approach. For x2, the average relative root mean square deviation is 0.28%. This

tells that the present formula could be used with satisfactory accuracy in the study

of the barrier penetration well below the Coulomb barrier.

3.2. α-decay half-lives

The new barrier penetration formula is used to calculate α-decay half-lives of 344

nuclei collected in Ref. 23. The experimental values of α-decay half-lives are also

taken from Ref. 23 except for 215Po. In Ref. 23, log(TExp
1/2 /s) = −3.74 for 215Po while

in Refs. 24–26 the experimental value is log(T Exp
1/2 /s) = −2.75. We take the latter

value in the present work. The experimental values of the α-decay half-lives range

from 10−7 ∼ 1024 s. The Q-values of the α-decays are also taken from Ref. 23 where

these values were calculated from the Atomic Mass Evaluation by Audi et al.27 or

from the mass table by Möller et al.28

The angular momentum L carried by the emitted α particle in a ground-state to

ground-state α transition of even–even nucleus is zero. In odd-A or odd–odd nuclei,
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Fig. 2. (Color online) Comparison of the calculated (blue crosses) and experimental (red dots)
values for α-decay half-lives of 159 even–even, 72 even–odd, 66 odd–even, and 47 odd–odd nuclei.
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Fig. 3. (Color online) The ratios between the calculated and experimental values for α-decay
half-lives of 159 even–even, 72 even–odd, 66 odd–even, and 47 odd–odd nuclei.

Table 2. A statistics of the ratios between the calculated
and the experimental values Sα = log10(TCal

1/2
/TExp

1/2
) for

the α-decay of 344 nuclei. 68 daughter nuclei are spherical
(|β2| < 0.01) and the results for them are given in the last
two lines.

Nuclei |Sα| ≤ 1 1 < |Sα| ≤ 2 2 < |Sα| ≤ 3

All 323 14 7
93.90% 4.07% 2.03%

Even–even 155 3 1
97.48% 1.89% 0.63%

Even–odd 69 2 1
95.83% 2.78% 1.39%

Odd–even 60 4 2
90.91% 6.06% 3.03%

Odd–odd 39 5 3
82.98% 10.64% 6.38%

Spherical 68 0 0
100.00% 0.00% 0.00%

L could be nonzero. Because the information on L is absent, in the present work

we assume L = 0 for all α decays as usually done.19–21,29,30

In Fig. 2, the calculated results and experimental values for α-decay half-lives

are compared. In order to show it clearly, these 344 nuclei are divided into four
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Table 3. Comparison between the calculated and experimental α decay half lives of 68 nuclei of

which the daughter nuclei are spherical (with |β2| < 0.01). The charge and mass numbers of the
α decay nucleus are listed in the first and the second columns.

Qα log10[T1/2/s] Qα log10[T1/2/s]

Zp Ap (MeV) Cal Exp Zp Ap (MeV) Cal Exp

52 106 4.30 −3.83 −4.22 84 207 5.22 7.24 8.00
60 144 1.91 23.17 22.86 84 208 5.22 7.22 7.96
61 145 2.32 17.53 17.28 84 210 5.41 6.13 7.08
62 146 2.53 15.61 15.51 84 212 8.95 −6.58 −6.52
62 148 1.99 23.63 23.34 84 213 8.54 −5.58 −5.38
63 147 2.99 11.32 10.98 84 214 7.83 −3.62 −3.80
64 148 3.27 9.46 9.36 84 215 7.53 −2.71 −2.75
64 150 2.81 13.91 13.75 84 216 6.91 −0.61 −0.82
66 150 4.35 3.09 3.08 84 218 6.11 2.56 2.28
66 152 3.73 7.09 6.93 85 213 9.25 −6.95 −6.92
68 152 4.94 1.06 1.04 86 200 7.05 0.11 0.04
68 154 4.28 4.64 4.68 86 202 6.78 1.08 1.04

70 154 5.47 −0.33 −0.36 86 203 6.63 1.64 1.83
72 156 6.04 −1.66 −1.60 86 204 6.55 1.94 2.00
72 158 5.41 0.89 0.81 86 206 6.39 2.56 2.74
74 158 6.60 −2.76 −3.05 86 207 6.25 3.15 3.41
82 210 3.79 16.16 16.57 86 208 6.26 3.08 3.38
84 190 7.64 −2.51 −2.62 86 214 9.21 −6.52 −6.57
84 191 7.48 −2.03 −1.82 86 215 8.84 −5.63 −5.64
84 192 7.32 −1.53 −1.47 86 216 8.20 −3.93 −4.35
84 193 7.10 −0.80 −0.59 86 217 7.89 −3.04 −3.27
84 194 7.00 −0.47 −0.41 86 218 7.26 −1.02 −1.46
84 195 6.75 0.42 0.79 87 215 9.54 −6.94 −7.07
84 196 6.66 0.74 0.77 87 217 8.47 −4.32 −4.80
84 197 6.41 1.71 2.08 88 216 9.53 −6.59 −6.74
84 198 6.31 2.11 2.26 88 218 8.55 −4.17 −4.59
84 199 6.08 3.08 3.64 88 220 7.60 −1.35 −1.74
84 200 5.99 3.47 3.79 89 217 9.83 −6.93 −7.16
84 201 5.81 4.29 4.76 89 219 8.83 −4.56 −4.92
84 202 5.70 4.80 5.15 90 218 9.85 −6.65 −6.96
84 203 5.50 5.80 6.30 90 220 8.95 −4.51 −5.01
84 204 5.49 5.83 6.28 91 219 10.09 −6.85 −7.28
84 205 5.32 6.72 7.18 91 221 9.25 −4.93 −5.23
84 206 5.33 6.64 7.15 92 222 9.50 −5.20 −6.00

groups, namely, 159 even–even, 72 even–odd (even-Z and odd-N), 66 odd–even,

and 47 odd–odd nuclei. The ratios between the calculated and the experimental

values Sα = log10(T
Cal
1/2 /TExp

1/2 ) are presented in Fig. 3. Two dashed lines are drawn

to guide the eye. One finds that most of the calculated results are of the same order

of magnitude as the experimental values.

A statistics of the agreement between the calculation and the experiment is made

and given in Table 2. Among all these 344 nuclei, there are only seven for which the

calculated α-decay half-lives deviate by more than two orders of magnitude from

the corresponding experimental values and 93.90% of them agree with experimental

values within one order of magnitude.
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Our results are particularly good for even–even nuclei, the calculated half-lives

for 97.48% of 159 even–even nuclei deviates from the experiment by less than one

order of magnitude. The ratio Sα is less than one for 95.83% of 72 even Z and

odd N nuclei, 90.91% of 66 odd–even nuclei and 82.98% of 47 odd–odd nuclei. The

angular momentum carried by the emitted α particle might not be zero for odd-A

or odd–odd nuclei. This will bring in some errors for these nuclei in our calculation

because the centrifugal potential is ignored in the present study.

The deformation influences the α-decay life time both on the preformation

mechanism and on the penetration process.20,31–33 In the present work, we have as-

sumed the barrier potential to be spherical. In 68 of these 344 nuclei, the spherical

potential assumption is met well (with |β2| < 0.01 for the daughter nucleus34).

In Table 3 the calculated and experimental values of the α-decay half-lives for

these nuclei are given. The statistical summary is also shown in the last line of

Table 2. It is found that the new formula gives very good results for these spherical

nuclei. In most cases, the differences between the calculated and the experimental

values of log10 T1/2 are smaller than 0.5. The root mean square deviation between

log10[T
Cal
1/2/s] and log10[T

Exp
1/2 /s] is 0.34.

4. Conclusion

In the study of barrier penetration in nuclear physics, the parabolic approximation

is usually adopted because an analytical solution exists for the penetrability of a

parabola barrier potential. The parabola approximation works indeed well both for

the penetrability and for the fusion cross section at energies around or above the

Coulomb barrier. But it fails at energies much smaller than the barrier height due

to the long-range Coulomb interaction.

In the present work, we derived a new barrier penetration formula, Eq. (6),

based on the WKB approximation. We took into account the influence of the long

Coulomb tail in the barrier potential properly. Therefore this formula is especially

applicable to the barrier penetration with penetration energy much lower than the

Coulomb barrier. We have shown that the present analytical formula reproduces

the WKB results very well.

This new penetration formula is used to calculate α-decay half-lives of 344 nu-

clei with the α-nucleus potential given in Ref. 20. Satisfactory agreement between

the present calculation and the experiment is achieved. For spherical and even–

even nuclei, the results are particularly good. Therefore, the new formula could be

used in the study of barrier penetration at energies much smaller than the barrier

height. Furthermore, we expect that the new formula will facilitate the study of the

barrier penetrability where one has to introduce an energy-dependent one-

dimensional potential barrier or a barrier distribution function.
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Appendix A. Derivation of the New Penetration Formula

In order to evaluate the integration x2 in Eq. (4), we divide the potential between

the position of the barrier RB and the outer turning point Rout into two parts,

RB ≤ R ≤ RV and RV ≤ R ≤ Rout. RV should be large enough so that the nuclear

potential vanishes for R ≥ RV. For S wave,

x2 = 2

∫ Rout

RB

√

2µ

~2
(VN(R) + VC(R) − E) dR

= 2

∫ RV

RB

√

2µ

~2
(VN(R) + VC(R) − E) dR

+ 2

∫ Rout

RV

√

2µ

~2
(VC(R) − E) dR

= 2

∫ RV

RB

√
2µ

~

√

VC(R) − E

√

1 +
VN(R)

VC(R) − E
dR

+ 2

∫ Rout

RV

√

2µ

~2
(VC(R) − E) dR . (A.1)

It has been verified that when RV is not very close to Rout, |VN(R)/(VC(R)−E)| �
1, therefore,

x2 ≈ 2

∫ RV

RB

√
2µ

~

√

VC(R) − E

[

1 +
1

2

VN(R)

VC(R) − E

]

dR

+ 2

∫ Rout

RV

√

2µ

~2
(VC(R) − E) dR

= 2

∫ Rout

RB

√
2µ

~

√

VC(R) − E dR

+

∫ RV

RB

√
2µ

~

VN(R)
√

VC(R) − E
dR . (A.2)

Since the Coulomb potential outside the barrier (R ≥ RB) is well described by

[c.f. Eq. (10)],

VC(R) =
Z1Z2e

2

R
, (A.3)
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the first term in the above equation can be evaluated easily as,

x
(1)
2 ≡ 2

∫ Rout

RB

√
2µ

~

√

VC(R) − E dR

= 2kRB

[

τ

(

π

2
− arcsin

√

1

τ

)

−
√

τ − 1

]

, (A.4)

with k =
√

2µE/~ and τ = VC(RB)/E. For the evaluation of the second term

in Eq. (A.2), we adopt a Woods–Saxon form for the nuclear part of the barrier

potential,

VN(R) =
V0

1 + exp [(R − R0)/a]
, (A.5)

and replace
√

VC(R) − E in the denominator by
√

VC(RB) − E,

x
(2)
2 ≡

∫ RV

RB

√
2µ

~

VN(R)
√

VC(R) − E
dR

≈
∫ RV

RB

√
2µ

~

VN(R)
√

VC(RB) − E
dR

=
k√

τ − 1

V0

E
{R − a ln[1 + e(R−R0)/a]}|RV

RB

≈ k√
τ − 1

V0

E
{R0 − RB + a ln[1 + e(RB−R0)/a]}

=
ka√
τ − 1

V0

E
ln[1 + e(R0−RB)/a] . (A.6)

In the above derivation, we have used the fact that exp[(RV−R0)/a] � 1 for α-decay

and penetration well below the Coulomb barrier. Finally, we have an analytical

expression for x2,

x2 = 2kRB

[

τ

(

π

2
− arcsin

√

1

τ

)

−
√

τ − 1

]

+
ka√
τ − 1

V0

E
ln[1 + e(R0−RB)/a] . (A.7)
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