ITP OpenIR  > 理论物理所SCI论文
COMPUTATION OF DIMENSIONS FOR STRANGE ATTRACTORS BY THE BOX COUNTING RENORMALIZATION METHOD
YANG, WM; ZHENG, WM; YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.
1992
发表期刊COMMUNICATIONS IN THEORETICAL PHYSICS
ISSN0253-6102
卷号17期号:2页码:151-156
摘要The scaling ansatz for box counting functions is verified numerically for the reverse doubling sequence of the logistic map. A box counting renormalization method is developed to calculate dimensions for strange attractors.
关键词Universal Metric Properties Non-linear Transformations Coherent-anomaly Method Cooperative Phenomena Generalized Dimensions Endomorphisms
学科领域Physics
URL查看原文
收录类别SCI
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/11256
专题理论物理所SCI论文
通讯作者YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.
推荐引用方式
GB/T 7714
YANG, WM,ZHENG, WM,YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.. COMPUTATION OF DIMENSIONS FOR STRANGE ATTRACTORS BY THE BOX COUNTING RENORMALIZATION METHOD[J]. COMMUNICATIONS IN THEORETICAL PHYSICS,1992,17(2):151-156.
APA YANG, WM,ZHENG, WM,&YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA..(1992).COMPUTATION OF DIMENSIONS FOR STRANGE ATTRACTORS BY THE BOX COUNTING RENORMALIZATION METHOD.COMMUNICATIONS IN THEORETICAL PHYSICS,17(2),151-156.
MLA YANG, WM,et al."COMPUTATION OF DIMENSIONS FOR STRANGE ATTRACTORS BY THE BOX COUNTING RENORMALIZATION METHOD".COMMUNICATIONS IN THEORETICAL PHYSICS 17.2(1992):151-156.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Computation of Dimen(224KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[YANG, WM]的文章
[ZHENG, WM]的文章
[YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.]的文章
百度学术
百度学术中相似的文章
[YANG, WM]的文章
[ZHENG, WM]的文章
[YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.]的文章
必应学术
必应学术中相似的文章
[YANG, WM]的文章
[ZHENG, WM]的文章
[YANG, WM , ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。