ITP OpenIR  > 理论物理所1978-2010年知识产出
THE Q-DEFORMED DIFFERENTIAL OPERATOR ALGEBRA, A NEW SOLUTION TO THE YANG-BAXTER EQUATION AND QUANTUM PLANE
DAI, JH; GUO, HY; YAN, H; DAI, JH , CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
1991
发表期刊JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
ISSN0305-4470
卷号24期号:8页码:L409-L414
摘要The q-deformed differential calculus is proposed and analysed in the framework of quantum plane. The q-deformed differential operator algebra is investigated and applied in the investigation of the quantum group SU(q)(2) and its representations. The generalization to n-dimensional differential calculus is made and shown to be a new solution to quantum plane by providing a new solution of the Yang-Baxter equation.
部门归属ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA
学科领域Physics
URL查看原文
收录类别SCI
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/11316
专题理论物理所1978-2010年知识产出
通讯作者DAI, JH , CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA.
推荐引用方式
GB/T 7714
DAI, JH,GUO, HY,YAN, H,et al. THE Q-DEFORMED DIFFERENTIAL OPERATOR ALGEBRA, A NEW SOLUTION TO THE YANG-BAXTER EQUATION AND QUANTUM PLANE[J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL,1991,24(8):L409-L414.
APA DAI, JH,GUO, HY,YAN, H,&DAI, JH , CHINA CTR ADV SCI & TECHNOL,WORLD LAB,POB 8730,BEIJING 100080,PEOPLES R CHINA..(1991).THE Q-DEFORMED DIFFERENTIAL OPERATOR ALGEBRA, A NEW SOLUTION TO THE YANG-BAXTER EQUATION AND QUANTUM PLANE.JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL,24(8),L409-L414.
MLA DAI, JH,et al."THE Q-DEFORMED DIFFERENTIAL OPERATOR ALGEBRA, A NEW SOLUTION TO THE YANG-BAXTER EQUATION AND QUANTUM PLANE".JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL 24.8(1991):L409-L414.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
The q-deformed diffe(211KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[DAI, JH]的文章
[GUO, HY]的文章
[YAN, H]的文章
百度学术
百度学术中相似的文章
[DAI, JH]的文章
[GUO, HY]的文章
[YAN, H]的文章
必应学术
必应学术中相似的文章
[DAI, JH]的文章
[GUO, HY]的文章
[YAN, H]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。