ITP OpenIR  > 理论物理所SCI论文
GAUGE-INVARIANT HAMILTONIAN-FORMULATION OF MAXWELL-DIRAC FIELD-EQUATIONS
GU, Y; GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.
1991
发表期刊PHYSICS LETTERS A
ISSN0375-9601
卷号153期号:41067页码:268-272
摘要We present a Poisson structure on the basic space of gauge-invariant for spinor electrodynamics. The coupling of the matter and radiation appears in the Poisson structure rather than the energy-momentum tensor. Poincare symmetries are realized as canonical transformations. In particular, we obtain a manifestly gauge-invariant Liouville equation for the density matrix of spinor fields, which exhibits the nonlocal electromagnetic effects explicitly. By letting the Compton wavelength of the matter go to zero, we obtain the Vlasov equation for a polarized relativistic plasma.
部门归属ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA
关键词Magnetohydrodynamics
学科领域Physics
URL查看原文
收录类别SCI
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/11320
专题理论物理所SCI论文
通讯作者GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.
推荐引用方式
GB/T 7714
GU, Y,GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.. GAUGE-INVARIANT HAMILTONIAN-FORMULATION OF MAXWELL-DIRAC FIELD-EQUATIONS[J]. PHYSICS LETTERS A,1991,153(41067):268-272.
APA GU, Y,&GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA..(1991).GAUGE-INVARIANT HAMILTONIAN-FORMULATION OF MAXWELL-DIRAC FIELD-EQUATIONS.PHYSICS LETTERS A,153(41067),268-272.
MLA GU, Y,et al."GAUGE-INVARIANT HAMILTONIAN-FORMULATION OF MAXWELL-DIRAC FIELD-EQUATIONS".PHYSICS LETTERS A 153.41067(1991):268-272.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Gauge-invariant Hami(322KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[GU, Y]的文章
[GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.]的文章
百度学术
百度学术中相似的文章
[GU, Y]的文章
[GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.]的文章
必应学术
必应学术中相似的文章
[GU, Y]的文章
[GU, Y , LANZHOU UNIV,DEPT PHYS,LANZHOU 730000,PEOPLES R CHINA.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。