ITP OpenIR  > 理论物理所1978-2010年知识产出
NEW CONSTRAINT ON THE KP EQUATION AND A COUPLED BURGERS SYSTEM
LIU, QP; LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.
1995
发表期刊PHYSICS LETTERS A
ISSN0375-9601
卷号198期号:3页码:178-182
摘要A new type of constraint for the KP equation is proposed and a multi-component analogy of the Burgers equation is obtained. We show that this new system passes the WTC Painleve test. In the two-component case, our system coincides with the first nontrivial flow of the two-truncated KP hierarchy.
部门归属ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA
关键词Periodic Fixed-points Korteweg-devries Equation Backlund-transformations Symmetry Constraints Kadomtsev-petviashvili Integrable Systems Akns Hierarchy Toda Lattice Reductions
学科领域Physics
URL查看原文
收录类别SCI
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/11794
专题理论物理所1978-2010年知识产出
通讯作者LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.
推荐引用方式
GB/T 7714
LIU, QP,LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.. NEW CONSTRAINT ON THE KP EQUATION AND A COUPLED BURGERS SYSTEM[J]. PHYSICS LETTERS A,1995,198(3):178-182.
APA LIU, QP,&LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA..(1995).NEW CONSTRAINT ON THE KP EQUATION AND A COUPLED BURGERS SYSTEM.PHYSICS LETTERS A,198(3),178-182.
MLA LIU, QP,et al."NEW CONSTRAINT ON THE KP EQUATION AND A COUPLED BURGERS SYSTEM".PHYSICS LETTERS A 198.3(1995):178-182.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
New constraint on th(201KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[LIU, QP]的文章
[LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.]的文章
百度学术
百度学术中相似的文章
[LIU, QP]的文章
[LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.]的文章
必应学术
必应学术中相似的文章
[LIU, QP]的文章
[LIU, QP , UNIV MINES CHINA,BEIJING GRAD SCH,DEPT MATH,BEIJING 100083,PEOPLES R CHINA.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。