ITP OpenIR  > 理论物理所1978-2010年知识产出
COUNTING THE NUMBER OF PERIODS IN ONE-DIMENSIONAL MAPS WITH MULTIPLE CRITICAL-POINTS
XIE, FG; HAO, BL
1994
发表期刊PHYSICA A
ISSN0378-4371
卷号202期号:40910页码:237-263
摘要The problem of counting the number of different periodic orbits in continuous maps of an interval is solved. A map with m monotone pieces (laps) and m - 1 critical points may have at most m - 1 independent kneading sequences, which provide the most convenient parameters for the map. When one or more kneading sequences are kept constant or bound to vary simultaneously, Various degenerated cases of the map arise. The number of period n orbits of the general m-lap map as well as various degenerated cases is given by combinations of N-k(n) with k equal to or less than m, where N-m(n) is the number of period n orbits of a particular kind of degenerated m-lap map with only one kneading sequence. The quantity N-m(n) may be calculated or enumerated by many different methods, which are all discussed in this paper. We also give tabulated values for N-m(n) for m = 2 to 7.
部门归属ACAD SINICA,INST THEORET PHYS,BEIJING 100080,PEOPLES R CHINA; BEIJING NORMAL UNIV,DEPT PHYS,BEIJING,PEOPLES R CHINA
关键词Symbolic Dynamics Cubic Map Endomorphisms Cycles
学科领域Physics
URL查看原文
收录类别SCI
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/11970
专题理论物理所1978-2010年知识产出
推荐引用方式
GB/T 7714
XIE, FG,HAO, BL. COUNTING THE NUMBER OF PERIODS IN ONE-DIMENSIONAL MAPS WITH MULTIPLE CRITICAL-POINTS[J]. PHYSICA A,1994,202(40910):237-263.
APA XIE, FG,&HAO, BL.(1994).COUNTING THE NUMBER OF PERIODS IN ONE-DIMENSIONAL MAPS WITH MULTIPLE CRITICAL-POINTS.PHYSICA A,202(40910),237-263.
MLA XIE, FG,et al."COUNTING THE NUMBER OF PERIODS IN ONE-DIMENSIONAL MAPS WITH MULTIPLE CRITICAL-POINTS".PHYSICA A 202.40910(1994):237-263.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
COUNTING THE NUMBER (7829KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[XIE, FG]的文章
[HAO, BL]的文章
百度学术
百度学术中相似的文章
[XIE, FG]的文章
[HAO, BL]的文章
必应学术
必应学术中相似的文章
[XIE, FG]的文章
[HAO, BL]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。