ITP OpenIR  > 理论物理所1978-2010年知识产出
INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS
GAO, XC; XU, JB; QIAN, TZ; GAO, XC , ZHEJIANG UNIV,DEPT PHYS,HANGZHOU 310027,PEOPLES R CHINA.
1992
发表期刊PHYSICAL REVIEW A
ISSN1050-2947
卷号46期号:7页码:3626-3630
摘要In this paper, the Lewis-Riesenfeld invariant theory is generalized for the study of systems with non-Hermitian time-dependent Hamiltonians. It is then used to study the nonadiabatic cyclic evolution and the Aharonov-Anandan phase. It is shown that the study of noncyclic evolution can be reduced to the study of cyclic evolution. The two-level dissipative system and the classical time-dependent harmonic oscillator are discussed as illustrative examples.
部门归属CHINESE CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING,PEOPLES R CHINA; CHINESE ACAD SCI,INST THEORET PHYS,BEIJING,PEOPLES R CHINA
关键词Adiabatic Quantum Transitions Evolution
学科领域Physics
URL查看原文
收录类别SCI
WOS记录号WOS:A1992JV10900011
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/12128
专题理论物理所1978-2010年知识产出
通讯作者GAO, XC , ZHEJIANG UNIV,DEPT PHYS,HANGZHOU 310027,PEOPLES R CHINA.
推荐引用方式
GB/T 7714
GAO, XC,XU, JB,QIAN, TZ,et al. INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS[J]. PHYSICAL REVIEW A,1992,46(7):3626-3630.
APA GAO, XC,XU, JB,QIAN, TZ,&GAO, XC , ZHEJIANG UNIV,DEPT PHYS,HANGZHOU 310027,PEOPLES R CHINA..(1992).INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS.PHYSICAL REVIEW A,46(7),3626-3630.
MLA GAO, XC,et al."INVARIANTS AND GEOMETRIC PHASE FOR SYSTEMS WITH NON-HERMITIAN TIME-DEPENDENT HAMILTONIANS".PHYSICAL REVIEW A 46.7(1992):3626-3630.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Invariants and geome(202KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[GAO, XC]的文章
[XU, JB]的文章
[QIAN, TZ]的文章
百度学术
百度学术中相似的文章
[GAO, XC]的文章
[XU, JB]的文章
[QIAN, TZ]的文章
必应学术
必应学术中相似的文章
[GAO, XC]的文章
[XU, JB]的文章
[QIAN, TZ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。