ITP OpenIR  > 理论物理所SCI论文
Bound state in a one-dimensional quantum sine-Gordon model
Yuan, QS; Chen, YG; Chen, H; Zhang, YM; Yuan, QS , Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China.
1998
发表期刊PHYSICAL REVIEW B
ISSN0163-1829
卷号57期号:3页码:1324-1327
摘要The impurity problem ina one-dimensional quantum sine-Gordon model is studied in this paper. We use an analytic self-consistent theory to derive the excitation spectrum of the global sine-Gordon model, and then to study the bound state induced by local impurity. We give the conditions where an impurity level exists within the global gap of the excitation spectrum and show the possibility of the existence of a threshold value about the model parameter.
部门归属Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China; Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China; Acad Sinica, Inst Theoret Phys, Beijing 100080, Peoples R China
关键词Haldane-gap Impurity Spectrum
学科领域Physics
URL查看原文
收录类别SCI
WOS记录号WOS:000071716800006
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/12365
专题理论物理所SCI论文
通讯作者Yuan, QS , Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China.
推荐引用方式
GB/T 7714
Yuan, QS,Chen, YG,Chen, H,et al. Bound state in a one-dimensional quantum sine-Gordon model[J]. PHYSICAL REVIEW B,1998,57(3):1324-1327.
APA Yuan, QS,Chen, YG,Chen, H,Zhang, YM,&Yuan, QS , Tongji Univ, Pohl Inst Solid State Phys, Shanghai 200092, Peoples R China..(1998).Bound state in a one-dimensional quantum sine-Gordon model.PHYSICAL REVIEW B,57(3),1324-1327.
MLA Yuan, QS,et al."Bound state in a one-dimensional quantum sine-Gordon model".PHYSICAL REVIEW B 57.3(1998):1324-1327.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Bound state in a one(80KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, QS]的文章
[Chen, YG]的文章
[Chen, H]的文章
百度学术
百度学术中相似的文章
[Yuan, QS]的文章
[Chen, YG]的文章
[Chen, H]的文章
必应学术
必应学术中相似的文章
[Yuan, QS]的文章
[Chen, YG]的文章
[Chen, H]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。