中国科学院理论物理研究所机构知识库
Advanced  
ITP OpenIR  > 理论物理所1978-2010年知识产出  > 期刊论文
题名: Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions
作者: 陈晓松 ;  Dohm, V
刊名: PHYSICAL REVIEW E
出版日期: 2003
卷号: 67, 期号:5, 页码:-
关键词: UPPER CRITICAL DIMENSION ;  T-LAMBDA ;  CONFINED HE-4 ;  FREE-ENERGY ;  SUPERFLUID TRANSITION ;  CRITICAL-BEHAVIOR ;  PHI(4) THEORY ;  3 DIMENSIONS ;  HEAT ;  SYSTEMS
学科分类: Physics
通讯作者: Chen, XS , Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100080, Peoples R China.
部门归属: Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China; Rhein Westfal TH Aachen, Inst Theoret Phys, D-52056 Aachen, Germany
英文摘要: We calculate finite-size effects of the Gaussian model in a LxL(d-1) box geometry with free boundary conditions in one direction and periodic boundary conditions in d-1 directions for 2<4. We also consider film geometry (L-->infinity). Finite-size scaling is found to be valid for d<3 and d>3 but logarithmic deviations from finite-size scaling are found for the free energy and energy density at the Gaussian upper borderline dimension d(*)=3. The logarithms are related to the vanishing critical exponent 1-alpha-nu=(d-3)/2 of the Gaussian surface energy density. The latter has a cusplike singularity in d>3 dimensions. We show that these properties are the origin of nonscaling finite-size effects in the mean spherical model with free boundary conditions in dgreater than or equal to3 dimensions. At bulk T(c), in d=3 dimensions we find an unexpected nonlogarithmic violation of finite-size scaling for the susceptibility chisimilar toL(3) of the mean spherical model in film geometry, whereas only a logarithmic deviation chisimilar toL(2) ln L exists for box geometry. The result for film geometry is explained by the existence of the lower borderline dimension d(l)=3, as implied by the Mermin-Wagner theorem, that coincides with the Gaussian upper borderline dimension d(*)=3. For 3<4 we find a power-law violation of scaling chisimilar toL(d-1) at bulk T(c) for box geometry and a nonscaling temperature dependence chi(surface)similar toxi(d) of the surface susceptibility above T(c). For 2<3 dimensions we show the validity of universal finite-size scaling for the susceptibility of the mean spherical model with free boundary conditions for both box and film geometry and calculate the corresponding universal scaling functions for Tgreater than or equal toT(c).
收录类别: SCI
原文出处: 查看原文
WOS记录号: WOS:000183482400031
Citation statistics: 
内容类型: 期刊论文
URI标识: http://ir.itp.ac.cn/handle/311006/13313
Appears in Collections:理论物理所1978-2010年知识产出_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions.pdf(292KB)----开放获取View Download

Recommended Citation:
Chen, XS,Dohm, V. Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions[J]. PHYSICAL REVIEW E,2003,67(5):-.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Chen, XS]'s Articles
 [Dohm, V]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Chen, XS]‘s Articles
 [Dohm, V]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
文件名: Scaling and nonscaling finite-size effects in the Gaussian and the mean spherical model with free boundary conditions.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院理论物理研究所 - Feedback
Powered by CSpace