Knowledge Management System of Institute of Theoretical Physics, CAS
Meng, XH; Wang, P; Meng, XH , Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. | |
Modified Friedmann equations in R-1-modified gravity | |
发表期刊 | CLASSICAL AND QUANTUM GRAVITY
![]() |
关键词 | Cosmological Constant Accelerating Universe Newtonian Dynamics Quintessence Supernovae Brane |
摘要 | Recently, corrections to the Einstein-Hilbert action that become important at small curvature have been proposed. We discuss the first-order and second-order approximations to the field equations derived by the Palatini variational principle. We work out the first- and second-order modified Friedmann equations and present the upper redshift bounds when these approximations are valid. We show that the second-order effects can be neglected in the cosmological predictions involving only the Hubble parameter, e.g. the various cosmological distances, but the second-order effects cannot be neglected in the predictions involving the derivatives of the Hubble parameter. Furthermore, the modified Friedmann equations fit the SNe Ia data at an acceptable level. |
2003 | |
ISSN | 0264-9381 |
卷号 | 20期号:22页码:4949-4961 |
学科领域 | Physics |
收录类别 | SCI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.itp.ac.cn/handle/311006/14181 |
专题 | 理论物理所科研产出_SCI论文 |
通讯作者 | Meng, XH , Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. |
推荐引用方式 GB/T 7714 | Meng, XH,Wang, P,Meng, XH , Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China.. Modified Friedmann equations in R-1-modified gravity[J]. CLASSICAL AND QUANTUM GRAVITY,2003,20(22):4949-4961. |
APA | Meng, XH,Wang, P,&Meng, XH , Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China..(2003).Modified Friedmann equations in R-1-modified gravity.CLASSICAL AND QUANTUM GRAVITY,20(22),4949-4961. |
MLA | Meng, XH,et al."Modified Friedmann equations in R-1-modified gravity".CLASSICAL AND QUANTUM GRAVITY 20.22(2003):4949-4961. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Modified Friedmann e(228KB) | 开放获取 | 使用许可 | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论