ITP OpenIR  > 理论物理所科研产出  > SCI论文
Wang, WT; Li, YY; Yang, SJ; Yang, SJ (reprint author), Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
EXACT SOLUTIONS TO THE THREE-DIMENSIONAL GROSS-PITAEVSKII EQUATION WITH MODULATED RADIAL NONLINEARITY
发表期刊MODERN PHYSICS LETTERS B
语种英语
关键词Bose-einstein Condensate Solitons Vortices Stability
摘要We study the Bose-Einstein condensate trapped in a three-dimensional spherically symmetrical potential. Exact solutions to the stationary Gross-Pitaevskii equation are obtained for properly modulated radial nonlinearity. The solutions contain vortices with different winding numbers and exhibit the shell-soliton feature in the radial distributions.
2013
ISSN0217-9849
卷号27期号:14页码:1350105
学科领域Physics
收录类别SCI
项目资助者Ministry of Science and Technology of China [2012CB821403] ; Ministry of Science and Technology of China [2012CB821403] ; Ministry of Science and Technology of China [2012CB821403] ; Ministry of Science and Technology of China [2012CB821403]
引用统计
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/15347
专题理论物理所科研产出_SCI论文
通讯作者Yang, SJ (reprint author), Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.
推荐引用方式
GB/T 7714
Wang, WT,Li, YY,Yang, SJ,et al. EXACT SOLUTIONS TO THE THREE-DIMENSIONAL GROSS-PITAEVSKII EQUATION WITH MODULATED RADIAL NONLINEARITY[J]. MODERN PHYSICS LETTERS B,2013,27(14):1350105.
APA Wang, WT,Li, YY,Yang, SJ,&Yang, SJ .(2013).EXACT SOLUTIONS TO THE THREE-DIMENSIONAL GROSS-PITAEVSKII EQUATION WITH MODULATED RADIAL NONLINEARITY.MODERN PHYSICS LETTERS B,27(14),1350105.
MLA Wang, WT,et al."EXACT SOLUTIONS TO THE THREE-DIMENSIONAL GROSS-PITAEVSKII EQUATION WITH MODULATED RADIAL NONLINEARITY".MODERN PHYSICS LETTERS B 27.14(2013):1350105.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
EXACT SOLUTIONS TO T(375KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, WT]的文章
[Li, YY]的文章
[Yang, SJ]的文章
百度学术
百度学术中相似的文章
[Wang, WT]的文章
[Li, YY]的文章
[Yang, SJ]的文章
必应学术
必应学术中相似的文章
[Wang, WT]的文章
[Li, YY]的文章
[Yang, SJ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。