ITP OpenIR  > 理论物理所2014年知识产出
Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model
Wang, C; Qin, SM; Zhou, HJ; Wang, C (reprint author), Chinese Acad Sci, Inst Theoret Phys, State Key Lab Stat Phys, Zhong Guan Cun East Rd 55, Beijing 100190, Peoples R China.
2014
发表期刊PHYSICAL REVIEW B
ISSN1098-0121
卷号90期号:17页码:174201
摘要Tensor renormalization group (TRG) method is a real space renormalization group approach. It has been successfully applied to both classical and quantum systems. In this paper, we study a disordered and frustrated system, the two-dimensional Edwards-Anderson model, by a new topological invariant TRG scheme. We propose an approach to calculate the local magnetizations and nearest pair correlations simultaneously. The Nishimori multicritical point predicted by the topological invariant TRG agrees well with the recent Monte Carlo results. The TRG schemes outperform the mean-field methods on the calculation of the partition function. We notice that it might obtain a negative partition function at sufficiently low temperatures. However, the negative contribution can be neglected if the system is large enough. This topological invariant TRG can also be used to study three-dimensional spin glass systems.
部门归属[Wang, Chuang
关键词Ising-model Multicritical Point Belief Propagation Lattice Energy Dimensions Phase
学科领域Physics
资助者National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526]
DOI10.1103/PhysRevB.90.174201
URL查看原文
收录类别SCI
语种英语
资助者National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526] ; National Basic Research Program of China [2013CB932804]; Knowledge Innovation Program of Chinese Academy of Sciences [KJCX2-EW-J02]; National Science Foundation of China (NSFC) [11121403, 11225526]
WOS记录号WOS:000344914700002
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/15579
专题理论物理所2014年知识产出
通讯作者Wang, C (reprint author), Chinese Acad Sci, Inst Theoret Phys, State Key Lab Stat Phys, Zhong Guan Cun East Rd 55, Beijing 100190, Peoples R China.
推荐引用方式
GB/T 7714
Wang, C,Qin, SM,Zhou, HJ,et al. Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model[J]. PHYSICAL REVIEW B,2014,90(17):174201.
APA Wang, C,Qin, SM,Zhou, HJ,&Wang, C .(2014).Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model.PHYSICAL REVIEW B,90(17),174201.
MLA Wang, C,et al."Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model".PHYSICAL REVIEW B 90.17(2014):174201.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Topologically invari(602KB) 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, C]的文章
[Qin, SM]的文章
[Zhou, HJ]的文章
百度学术
百度学术中相似的文章
[Wang, C]的文章
[Qin, SM]的文章
[Zhou, HJ]的文章
必应学术
必应学术中相似的文章
[Wang, C]的文章
[Qin, SM]的文章
[Zhou, HJ]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。