ITP OpenIR  > 理论物理所2015年知识产出
Asymptotic expressions for the hyperfine populations in the ground state of spin-1 condensates against a magnetic field
Liu, YM; He, YZ; Bao, CG; Bao, CG (reprint author), Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China.
2015
发表期刊PHYSICAL REVIEW A
卷号92期号:4页码:43617
文章类型Article
摘要Based on perturbation theory up to second order, analytical asymptotic expressions for the variation of the population of hyperfine component mu = 0 particles in the ground state of spin-1 condensates against a magnetic field B have been derived. The ranges of B in which the asymptotic expressions are applicable have been clarified via a comparison of the numerical results from the analytical expressions and from a diagonalization of the Hamiltonian in a complete spin space. It was found that, for Rb-87, the two analytical expressions, one for a weak field and the other one for a strong field, together cover the whole range of B from zero to infinity. For Na, the analytical expressions are valid only if B is very weak or sufficiently strong.
学科领域Optics ; Physics
资助者National Natural Science Foundation of China (NNSFC) [11372122] ; National Natural Science Foundation of China (NNSFC) [11372122] ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; National Natural Science Foundation of China (NNSFC) [11372122] ; National Natural Science Foundation of China (NNSFC) [11372122] ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China
DOIhttp://dx.doi.org/10.1103/PhysRevA.92.043617
关键词[WOS]BOSE ; DYNAMICS ; GASES
收录类别SCI
语种英语
资助者National Natural Science Foundation of China (NNSFC) [11372122] ; National Natural Science Foundation of China (NNSFC) [11372122] ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; National Natural Science Foundation of China (NNSFC) [11372122] ; National Natural Science Foundation of China (NNSFC) [11372122] ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China ; Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China
WOS类目Optics ; Physics, Atomic, Molecular & Chemical
引用统计
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/20825
专题理论物理所2015年知识产出
通讯作者Bao, CG (reprint author), Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China.
推荐引用方式
GB/T 7714
Liu, YM,He, YZ,Bao, CG,et al. Asymptotic expressions for the hyperfine populations in the ground state of spin-1 condensates against a magnetic field[J]. PHYSICAL REVIEW A,2015,92(4):43617.
APA Liu, YM,He, YZ,Bao, CG,&Bao, CG .(2015).Asymptotic expressions for the hyperfine populations in the ground state of spin-1 condensates against a magnetic field.PHYSICAL REVIEW A,92(4),43617.
MLA Liu, YM,et al."Asymptotic expressions for the hyperfine populations in the ground state of spin-1 condensates against a magnetic field".PHYSICAL REVIEW A 92.4(2015):43617.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Asymptotic expressio(303KB)期刊论文出版稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, YM]的文章
[He, YZ]的文章
[Bao, CG]的文章
百度学术
百度学术中相似的文章
[Liu, YM]的文章
[He, YZ]的文章
[Bao, CG]的文章
必应学术
必应学术中相似的文章
[Liu, YM]的文章
[He, YZ]的文章
[Bao, CG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。