中国科学院理论物理研究所机构知识库
Advanced  
ITP OpenIR  > 理论物理所2015年知识产出  > 期刊论文
题名: Fast adaptive flat-histogram ensemble to enhance the sampling in large systems
作者: Xu, S;  Zhou, X;  Jiang, Y;  Wang, YT
刊名: SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY
出版日期: 2015
卷号: 58, 期号:9, 页码:590501
关键词: molecular dynamics simulations ;  enhanced sampling ;  density of states ;  generalized canonical ensemble ;  flat-histogram ensemble
学科分类: Physics
DOI: http://dx.doi.org/10.1007/s11433-015-5690-7
通讯作者: Zhou, X (reprint author), Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China.
文章类型: Article
英文摘要: An efficient novel algorithm was developed to estimate the Density of States (DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized canonical ensembles to interpolate the interior reverse temperature curve beta S(U) partial derivative S(U)/partial derivative U, where S(U) is the logarithm of the DOS. This curve is computed with different accuracies in different energy regions to capture the dependence of the reverse temperature on U without setting prior grid in the U space. By combining with a U-compression transformation, we decrease the computational complexity from O(N-3/2) in the normal Wang Landau type method to O(N-1/2) in the current algorithm, as the degrees of freedom of system N. The efficiency of the algorithm is demonstrated by applying to Lennard Jones fluids with various N, along with its ability to find different macroscopic states, including metastable states.
类目[WOS]: Physics, Multidisciplinary
关键词[WOS]: DENSITY-OF-STATES ;  ALGORITHM
收录类别: SCI
项目资助者: National Natural Science Foundation of China [11175250] ;  Open Project Grant from the State Key Laboratory of Theoretical Physics ;  Hundred of Talents Program in Chinese Academy of Sciences
语种: 英语
Citation statistics: 
内容类型: 期刊论文
URI标识: http://ir.itp.ac.cn/handle/311006/20884
Appears in Collections:理论物理所2015年知识产出_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
Fast adaptive flat-histogram ensemble to enhance the sampling in large systems.pdf(581KB)期刊论文出版稿开放获取View Download

Recommended Citation:
Xu, S,Zhou, X,Jiang, Y,et al. Fast adaptive flat-histogram ensemble to enhance the sampling in large systems[J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY,2015,58(9):590501.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Xu, S]'s Articles
 [Zhou, X]'s Articles
 [Jiang, Y]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Xu, S]‘s Articles
 [Zhou, X]‘s Articles
 [Jiang, Y]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
文件名: Fast adaptive flat-histogram ensemble to enhance the sampling in large systems.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院理论物理研究所 - Feedback
Powered by CSpace