ITP OpenIR  > 2017年知识产出
Near integrability of kink lattice with higher order interactions
Jiang, YG; Liu, JZ; He, S; Jiang, YG (reprint author), Shandong Univ Weihai, Sch Space Sci & Phys, Weihai 264209, Peoples R China.; Jiang, YG (reprint author), Shandong Univ, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Inst Space Sci, Weihai 264209, Peoples R China.
2017
发表期刊CHINESE PHYSICS C
卷号41期号:11页码:113107
文章类型Article
摘要We make use of Manton's analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka's variables to study the Lax pair of the kink lattice. These Flaschka's variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda.
关键词Integrable System Soliton Toda Lattice
学科领域Physics
资助者Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; Max-Planck fellowship in Germany ; Max-Planck fellowship in Germany ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; Max-Planck fellowship in Germany ; Max-Planck fellowship in Germany
DOIhttp://dx.doi.org/10.1088/1674-1137/41/11/113107
关键词[WOS]TODA LATTICE ; INTEGRALS
语种英语
资助者Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; Max-Planck fellowship in Germany ; Max-Planck fellowship in Germany ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; Shandong Provincial Natural Science Foundation [ZR2014AQ007] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; National Natural Science Foundation of China [11403015, U1531105, 11305235] ; Max-Planck fellowship in Germany ; Max-Planck fellowship in Germany
WOS类目Physics, Nuclear ; Physics, Particles & Fields
引用统计
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/21940
专题2017年知识产出
通讯作者Jiang, YG (reprint author), Shandong Univ Weihai, Sch Space Sci & Phys, Weihai 264209, Peoples R China.; Jiang, YG (reprint author), Shandong Univ, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Inst Space Sci, Weihai 264209, Peoples R China.
推荐引用方式
GB/T 7714
Jiang, YG,Liu, JZ,He, S,et al. Near integrability of kink lattice with higher order interactions[J]. CHINESE PHYSICS C,2017,41(11):113107.
APA Jiang, YG,Liu, JZ,He, S,Jiang, YG ,&Jiang, YG .(2017).Near integrability of kink lattice with higher order interactions.CHINESE PHYSICS C,41(11),113107.
MLA Jiang, YG,et al."Near integrability of kink lattice with higher order interactions".CHINESE PHYSICS C 41.11(2017):113107.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Near integrability o(205KB) 开放获取--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, YG]的文章
[Liu, JZ]的文章
[He, S]的文章
百度学术
百度学术中相似的文章
[Jiang, YG]的文章
[Liu, JZ]的文章
[He, S]的文章
必应学术
必应学术中相似的文章
[Jiang, YG]的文章
[Liu, JZ]的文章
[He, S]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。