ITP OpenIR  > 2017年知识产出
NeBcon: protein contact map prediction using neural network training coupled with naiive Bayes classifiers
He, BJ; Mortuza, SM; Wang, YT; Shen, HB; Zhang, Y; Zhang, Y (reprint author), Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA.; Zhang, Y (reprint author), Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA.
2017
发表期刊BIOINFORMATICS
卷号33期号:15页码:2296-2306
文章类型Article
摘要Motivation: Recent CASP experiments have witnessed exciting progress on folding large-size non-humongous proteins with the assistance of co-evolution based contact predictions. The success is however anecdotal due to the requirement of the contact prediction methods for the high volume of sequence homologs that are not available to most of the non-humongous protein targets. Development of efficient methods that can generate balanced and reliable contact maps for different type of protein targets is essential to enhance the success rate of the ab initio protein structure prediction. Results: We developed a new pipeline, NeBcon, which uses the naiive Bayes classifier (NBC) theorem to combine eight state of the art contact methods that are built from co-evolution and machine learning approaches. The posterior probabilities of the NBC model are then trained with intrinsic structural features through neural network learning for the final contact map prediction. NeBcon was tested on 98 non-redundant proteins, which improves the accuracy of the best co-evolution based meta-server predictor by 22%; the magnitude of the improvement increases to 45% for the hard targets that lack sequence and structural homologs in the databases. Detailed data analysis showed that the major contribution to the improvement is due to the optimized NBC combination of the complementary information from both co-evolution and machine learning predictions. The neural network training also helps to improve the coupling of the NBC posterior probability and the intrinsic structural features, which were found particularly important for the proteins that do not have sufficient number of homologous sequences to derive reliable co-evolution profiles.
学科领域Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
资助者National Institute of General Medical Sciences [GM083107, GM116960] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Science Foundation [DBI1564756] ; National Science Foundation [DBI1564756] ; Natural Science Foundation of China [31628003, 91227115] ; Natural Science Foundation of China [31628003, 91227115] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Science Foundation [DBI1564756] ; National Science Foundation [DBI1564756] ; Natural Science Foundation of China [31628003, 91227115] ; Natural Science Foundation of China [31628003, 91227115]
DOIhttp://dx.doi.org/10.1093/bioinformatics/btx164
关键词[WOS]CORRELATED MUTATIONS ; RESIDUE CONTACTS ; SEQUENCE ; COEVOLUTION ; ALIGNMENTS ; INFORMATION ; SEARCH ; SERVER
语种英语
资助者National Institute of General Medical Sciences [GM083107, GM116960] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Science Foundation [DBI1564756] ; National Science Foundation [DBI1564756] ; Natural Science Foundation of China [31628003, 91227115] ; Natural Science Foundation of China [31628003, 91227115] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Institute of General Medical Sciences [GM083107, GM116960] ; National Science Foundation [DBI1564756] ; National Science Foundation [DBI1564756] ; Natural Science Foundation of China [31628003, 91227115] ; Natural Science Foundation of China [31628003, 91227115]
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
引用统计
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/22000
专题2017年知识产出
通讯作者Zhang, Y (reprint author), Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA.; Zhang, Y (reprint author), Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA.
推荐引用方式
GB/T 7714
He, BJ,Mortuza, SM,Wang, YT,et al. NeBcon: protein contact map prediction using neural network training coupled with naiive Bayes classifiers[J]. BIOINFORMATICS,2017,33(15):2296-2306.
APA He, BJ.,Mortuza, SM.,Wang, YT.,Shen, HB.,Zhang, Y.,...&Zhang, Y .(2017).NeBcon: protein contact map prediction using neural network training coupled with naiive Bayes classifiers.BIOINFORMATICS,33(15),2296-2306.
MLA He, BJ,et al."NeBcon: protein contact map prediction using neural network training coupled with naiive Bayes classifiers".BIOINFORMATICS 33.15(2017):2296-2306.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
NeBcon Protein conta(486KB) 开放获取--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, BJ]的文章
[Mortuza, SM]的文章
[Wang, YT]的文章
百度学术
百度学术中相似的文章
[He, BJ]的文章
[Mortuza, SM]的文章
[Wang, YT]的文章
必应学术
必应学术中相似的文章
[He, BJ]的文章
[Mortuza, SM]的文章
[Wang, YT]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。