Knowledge Management System of Institute of Theoretical Physics, CAS
Goncharov, Boris2; Shannon, R. M.; Reardon, D. J.; Hobbs, G.; Zic, A.; Bailes, M.; Curylo, M.; Dai, S.; Kerr, M.; Lower, M. E.; Manchester, R. N.; Mandow, R.; Middleton, H.; Miles, M. T.; Parthasarathy, A.; Thrane, E.; Thyagarajan, N.; Xue, X.; Zhu, X. -J.; Cameron, A. D.; Feng, Y.; Luo, R.; Russell, C. J.; Sarkissian, J.; Spiewak, R.; Wang, S.; Wang, J. B.; Zhang, L.; Zhang, S. | |
On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array | |
Source Publication | ASTROPHYSICAL JOURNAL LETTERS
![]() |
Language | 英语 |
Keyword | LIMITS SIGNAL NOISE |
Abstract | A nanohertz-frequency stochastic gravitational-wave background can potentially be detected through the precise timing of an array of millisecond pulsars. This background produces low-frequency noise in the pulse arrival times that would have a characteristic spectrum common to all pulsars and a well-defined spatial correlation. Recently the North American Nanohertz Observatory for Gravitational Waves collaboration (NANOGrav) found evidence for the common-spectrum component in their 12.5 yr data set. Here we report on a search for the background using the second data release of the Parkes Pulsar Timing Array. If we are forced to choose between the two NANOGrav models-one with a common-spectrum process and one without-we find strong support for the common-spectrum process. However, in this paper, we consider the possibility that the analysis suffers from model misspecification. In particular, we present simulated data sets that contain noise with distinctive spectra but show strong evidence for a common-spectrum process under the standard assumptions. The Parkes data show no significant evidence for, or against, the spatially correlated Hellings-Downs signature of the gravitational-wave background. Assuming we did observe the process underlying the spatially uncorrelated component of the background, we infer its amplitude to be A=2.2(-0.3)(+0.4) x 10(-15) in units of gravitational-wave strain at a frequency of 1 yr(-1). Extensions and combinations of existing and new data sets will improve the prospects of identifying spatial correlations that are necessary to claim a detection of the gravitational-wave background. |
2021 | |
ISSN | 2041-8205 |
Volume | 917Issue:2Pages:L19 |
Cooperation Status | 国际 |
Subject Area | Astronomy & Astrophysics |
MOST Discipline Catalogue | Astronomy & Astrophysics |
DOI | 10.3847/2041-8213/ac17f4 |
Indexed By | SCIE |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itp.ac.cn/handle/311006/27423 |
Collection | SCI期刊论文 |
Affiliation | 1.[Goncharov, Boris; Shannon, R. M.; Reardon, D. J.; Bailes, M.; Lower, M. E.; Mandow, R.; Middleton, H.; Miles, M. T.; Cameron, A. D.; Spiewak, R.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia 2.Goncharov, Boris; Shannon, R. M.; Reardon, D. J.; Bailes, M.; Middleton, H.; Miles, M. T.; Thrane, E.; Zhu, X. -J.; Cameron, A. D.] OzGrav ARC Ctr Excellence Gravitat Wave Discovery, Hawthorn, Vic, Australia 3.Gran Sasso Sci Inst GSSI, I-67100 Laquila, Italy 4.Hobbs, G.; Zic, A.; Dai, S.; Lower, M. E.; Manchester, R. N.; Mandow, R.; Thyagarajan, N.; Luo, R.; Wang, S.] CSIRO, Australia Telescope Natl Facil, Space & Astron, POB 76, Epping, NSW 1710, Australia 5.Zic, A.] Macquarie Univ, Dept Phys & Astron, N Ryde, NSW 2109, Australia 6.Zic, A.] Macquarie Univ, Ctr Astron Astrophys & Astrophoton, N Ryde, NSW 2109, Australia 7.Curylo, M.] Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland 8.Dai, S.] Western Sydney Univ, Locked Bag 1797, Penrith, NSW 1797, Australia 9.Kerr, M.] Naval Res Lab, Space Sci Div, Washington, DC 20375 USA 10.Middleton, H.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia 11.Parthasarathy, A.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany 12.Thrane, E.; Xue, X.] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia 13.Xue, X.] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China 14.Xue, X.] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China 15.Feng, Y.] Chinese Acad Sci, Natl Astron Observ, CAS Key Lab FAST, Beijing 100101, Peoples R China 16.Russell, C. J.] CSIRO Sci Comp, Australian Technol Pk,Locked Bag 9013, Alexandria, NSW 1435, Australia 17.Sarkissian, J.] CSIRO Space & Astron, Australia Telescope Natl Facil, POB 276, Parkes, NSW 2870, Australia 18.Spiewak, R.] Univ Manchester, Dept Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England 19.Wang, S.; Wang, J. B.] Chinese Acad Sci, Xinjiang Astron Observ, 150 Sci 1 St, Urumqi 830011, Xinjiang, Peoples R China 20.Zhang, L.] Chinese Acad Sci, Natl Astron Observ, A20 Datun Rd, Beijing 100101, Peoples R China 21.Zhang, S.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China |
Recommended Citation GB/T 7714 | Goncharov, Boris,Shannon, R. M.,Reardon, D. J.,et al. On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array[J]. ASTROPHYSICAL JOURNAL LETTERS,2021,917(2):L19. |
APA | Goncharov, Boris.,Shannon, R. M..,Reardon, D. J..,Hobbs, G..,Zic, A..,...&Zhang, S..(2021).On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array.ASTROPHYSICAL JOURNAL LETTERS,917(2),L19. |
MLA | Goncharov, Boris,et al."On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array".ASTROPHYSICAL JOURNAL LETTERS 917.2(2021):L19. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment