ITP OpenIR  > 理论物理所SCI论文
Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity
Liang, Jie; Qian, Hong; Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
2010
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号25期号:1页码:154-168
摘要Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
部门归属[Liang, J] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA; [Liang, J] Shanghai Jiao Tong Univ, Shanghai Ctr Syst Biomed, Shanghai 200240, Peoples R China; [Qian, H] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA; [Qian, H] Chinese Acad Sci, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China
关键词Monte-carlo Method Escherichia-coli Folding Kinetics Reaction Systems Lattice Model Steady-state Protein Fluctuations Thermodynamics Simulation
学科领域Physics
资助者US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001]
URL查看原文
收录类别SCI
资助者US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001] ; US NIH[GM079804, GM081682, GM086145, GM068610]; NSF of USA[DBI-0646035, DMS-0800257]; Shanghai Jiao Tong University[T226208001]
WOS记录号WOS:000273741700014
引用统计
被引频次:27[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/5192
专题理论物理所SCI论文
通讯作者Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
推荐引用方式
GB/T 7714
Liang, Jie,Qian, Hong,Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2010,25(1):154-168.
APA Liang, Jie,Qian, Hong,&Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA.(2010).Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,25(1),154-168.
MLA Liang, Jie,et al."Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25.1(2010):154-168.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Computational Cellul(551KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liang, Jie]的文章
[Qian, Hong]的文章
[Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA]的文章
百度学术
百度学术中相似的文章
[Liang, Jie]的文章
[Qian, Hong]的文章
[Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA]的文章
必应学术
必应学术中相似的文章
[Liang, Jie]的文章
[Qian, Hong]的文章
[Liang, J , Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。