ITP OpenIR  > 理论物理所SCI论文
Engineering integrable nonautonomous nonlinear Schrodinger equations
He, Xu-Gang; Zhao, Dun; Li, Lin; Luo, Hong-Gang; He, XG , Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
2009
发表期刊PHYSICAL REVIEW E
ISSN1539-3755
卷号79期号:5页码:-
摘要We investigate Painleve integrability of a generalized nonautonomous one-dimensional nonlinear Schrodinger (NLS) equation with time- and space-dependent dispersion, nonlinearity, and external potentials. Through the Painleve analysis some explicit requirements on the dispersion, nonlinearity, dissipation/gain, and the external potential as well as the constraint conditions are identified. It provides an explicit way to engineer integrable nonautonomous NLS equations at least in the sense of Painleve integrability. Furthermore analytical solutions of this class of integrable nonautonomous NLS equations can be obtained explicitly from the solutions of the standard NLS equation by a general transformation. The result provides a significant way to control coherently the soliton dynamics in the corresponding nonlinear systems, as that in Bose-Einstein condensate experiments. We analyze explicitly the soliton dynamics under the nonlinearity management and the external potentials and discuss its application in the matter-wave dynamics. Some comparisons with the previous works have also been discussed.
部门归属[He, XG; Zhao, D] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China; [He, XG] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA; [Zhao, D; Luo, HG] Lanzhou Univ, Ctr Interdisciplinary Studies, Lanzhou 730000, Peoples R China; [Li, L] Lanzhou Univ, Dept Modern Phys, Lanzhou 73000, Peoples R China; [Luo, HG] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 73000, Peoples R China; [Luo, HG] Chinese Acad Sci, Inst Theoret Phys, Key Lab Frontiers Theoret Phys, Beijing 100080, Peoples R China
关键词Partial-differential Equations Dispersion Management Evolution-equations Varying Dispersion Painleve Property Soliton-solutions Optical-soliton Dynamics Model Waves
学科领域Physics
资助者NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China
URL查看原文
收录类别SCI
资助者NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China ; NCET; NSF; National Program for Basic Research of China
WOS记录号WOS:000266500800077
引用统计
被引频次:83[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.itp.ac.cn/handle/311006/5335
专题理论物理所SCI论文
通讯作者He, XG , Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
He, Xu-Gang,Zhao, Dun,Li, Lin,et al. Engineering integrable nonautonomous nonlinear Schrodinger equations[J]. PHYSICAL REVIEW E,2009,79(5):-.
APA He, Xu-Gang,Zhao, Dun,Li, Lin,Luo, Hong-Gang,&He, XG , Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China.(2009).Engineering integrable nonautonomous nonlinear Schrodinger equations.PHYSICAL REVIEW E,79(5),-.
MLA He, Xu-Gang,et al."Engineering integrable nonautonomous nonlinear Schrodinger equations".PHYSICAL REVIEW E 79.5(2009):-.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Engineering integrab(3283KB) 开放获取使用许可请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Xu-Gang]的文章
[Zhao, Dun]的文章
[Li, Lin]的文章
百度学术
百度学术中相似的文章
[He, Xu-Gang]的文章
[Zhao, Dun]的文章
[Li, Lin]的文章
必应学术
必应学术中相似的文章
[He, Xu-Gang]的文章
[Zhao, Dun]的文章
[Li, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。