Knowledge Management System of Institute of Theoretical Physics, CAS
Peng, J.; Meng, J.; Ring, P.; Zhang, S. Q.; Peng, J , Peking Univ, Sch Phys, Beijing 100871, Peoples R China | |
Covariant density functional theory for magnetic rotation | |
Source Publication | PHYSICAL REVIEW C
![]() |
Keyword | Mean-field-theory Hartree-bogoliubov Theory Oscillator Wave Functions Ground-state Properties Tilted-axis Cranking Neutron Drip-line Shears Bands Pseudospin Symmetry Nuclear Rotations Relativistic Description |
Abstract | The tilted axis cranking formalism is implemented in relativistic mean field (RMF) theory. It is used for a microscopic description of magnetic rotation in the framework of covariant density functional theory. We assume that the rotational axis is in the xz plane and consider systems with the two symmetries P (space reflection) and P(y)T (a combination of a reflection in the v direction and time reversal). A computer code based on these symmetries is developed, and first applications are discussed for the nucleus (142)Gd: the rotational band based on the configuration pi h(11/2)(2) circle times nu h(11/2)(-2) is investigated in a fully microscopic and self-consistent way. The results are compared with available data, such as spectra and electromagnetic transition ratios B(M1)/B(E2). The relation between rotational velocity and angular momentum are discussed in detail together with the shears mechanism characteristic of magnetic rotation. |
2008 | |
ISSN | 0556-2813 |
Volume | 78Issue:2Pages:- |
Subject Area | Physics |
Indexed By | SCI |
Funding Organization | Major State Basic Research Development Program[2007CB815000]; National Natural Science Foundation of China[10705004, 10435010, 10221003, 10505002]; Peking University[17-05/04]; European Union project Asia-Europe Link in Nuclear Physics and Astrophysics; Bundesministerium fur Bildung und Forschung, Germany; Ministerio de Educacion y Ciencia, Spain[SAB2005-0025]; [CN/ASIA-LINK/008(94791)]; [06MT 246] ; Major State Basic Research Development Program[2007CB815000]; National Natural Science Foundation of China[10705004, 10435010, 10221003, 10505002]; Peking University[17-05/04]; European Union project Asia-Europe Link in Nuclear Physics and Astrophysics; Bundesministerium fur Bildung und Forschung, Germany; Ministerio de Educacion y Ciencia, Spain[SAB2005-0025]; [CN/ASIA-LINK/008(94791)]; [06MT 246] ; Major State Basic Research Development Program[2007CB815000]; National Natural Science Foundation of China[10705004, 10435010, 10221003, 10505002]; Peking University[17-05/04]; European Union project Asia-Europe Link in Nuclear Physics and Astrophysics; Bundesministerium fur Bildung und Forschung, Germany; Ministerio de Educacion y Ciencia, Spain[SAB2005-0025]; [CN/ASIA-LINK/008(94791)]; [06MT 246] ; Major State Basic Research Development Program[2007CB815000]; National Natural Science Foundation of China[10705004, 10435010, 10221003, 10505002]; Peking University[17-05/04]; European Union project Asia-Europe Link in Nuclear Physics and Astrophysics; Bundesministerium fur Bildung und Forschung, Germany; Ministerio de Educacion y Ciencia, Spain[SAB2005-0025]; [CN/ASIA-LINK/008(94791)]; [06MT 246] |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.itp.ac.cn/handle/311006/5489 |
Collection | SCI期刊论文 |
Corresponding Author | Peng, J , Peking Univ, Sch Phys, Beijing 100871, Peoples R China |
Recommended Citation GB/T 7714 | Peng, J.,Meng, J.,Ring, P.,et al. Covariant density functional theory for magnetic rotation[J]. PHYSICAL REVIEW C,2008,78(2):-. |
APA | Peng, J.,Meng, J.,Ring, P.,Zhang, S. Q.,&Peng, J , Peking Univ, Sch Phys, Beijing 100871, Peoples R China.(2008).Covariant density functional theory for magnetic rotation.PHYSICAL REVIEW C,78(2),-. |
MLA | Peng, J.,et al."Covariant density functional theory for magnetic rotation".PHYSICAL REVIEW C 78.2(2008):-. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Covariant density fu(730KB) | 开放获取 | License | Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment